• Title/Summary/Keyword: 영상 특징 모델링

Search Result 157, Processing Time 0.026 seconds

Bimodal Speech Recognition Modeling Using Neural Networks (신경망을 이용한 이중모달 음성 인식 모델링)

  • 류정우;성지애;이순신;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.567-569
    • /
    • 2003
  • 최근 잡음환경에서 강인한 음성인식을 위해 음성 잡음에 영향을 받지 않은 영상정보를 이용한 이중모달 음성인식 연구가 활발히 진행되고 있다. 기존 음성인식기로 좋은 성능을 보이는 HMM은 이질적인 정보를 융합하는데 있어 많은 제약과 어려움을 가지고 있다. 하지만 신경망은 이질적인 정보를 효율적으로 융합할 수 있는 장점을 가지고 있으며 그에 대한 많은 연구가 수행되고 있다. 따라서 본 논문에서는 잡음환경에 강인한 이중모달 음성 인식 모델로 이중모달 신경망(BN-NN)을 제안한다. 이중모달 신경망은 특징융합 방법으로 음성정보와 영상정보를 융합하고 있으며. 입력정보의 특성을 고려하기 위해 윈도우와 중복영역의 개념을 적용하여 시제위치를 고려하도록 설계되어있다. 제안된 모델은 잡음환경에서 음성인식기와 성능을 비교하고, 화자독립 고립단어 인식에서 기존 융합방법인 CHMM과 비교하여 그 가능성을 확인한다.

  • PDF

Gait Recognition using Modified Motion Silhouette Image (개선된 움직임 실루엣 영상을 이용한 발걸음 인식에 관한 연구)

  • Hong Seong-Jun;Lee Hui-Seong;O Gyeong-Se;Kim Eun-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.49-52
    • /
    • 2006
  • 본 논문에서는 은닉 마르코프 모델을 바탕으로 하는 발걸음을 이용한 개인 식별 시스템을 제안한다. 개인의 발걸음은 연속적인 자세나 움직임의 집합으로 나타낼 수 있는데, 구조적으로 연속적인 움직임의 변화는 확률적인 특성을 가지고 있기 때문에 은닉 마르코프 모델을 이용하여 적절하게 모델링 할 수 있다. 개인의 발걸음은 N개의 이산적인 자세 간의 전이로 이루어졌다고 가정하였으며, 이를 계산하기 위해 MMSI라는 발걸음 특징 모델을 제안하였다. MMSI는 발걸음 인식에 중요한 역할을 하는 시공간적인 정보를 가지고 있는 그레이-스케일 영상이다. 실험 결과는 MMSI를 이용하여 은닉 마르코프 모델을 바탕으로 한 발걸음 인식 결과를 보여준다.

  • PDF

Semantic Information Modeling for Image Annotation System (이미지 주석 시스템을 위한 의미 정보 모델링)

  • Choi, Jun-Ho;Kwak, Hyo-Seung;Kim, Won-Pil;Kim, Pan-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.787-790
    • /
    • 2002
  • 의미 기반 영상 검색은 Color, Texture, Region 정보, Spatial Color Distribution등의 저차원 특징 정보와 이미지 데이터에 의미를 부여하기 위해 주서 처리하는 것이 일반적이다. 그리고 부여된 키워드나 시소러스와 같은 어휘 사전을 이용하여 의미기반 정보검색을 수행하고 있지만, 기존의 키워드기반 텍스트 정보검색의 한계를 벗어나지 못하는 문제를 야기 시킨다. 이에 본 논문에서는 시각 데이터에 존재하는 객체들과 그 객체 사이의 개념관계를 Ontology의 한 형태인 WordNet을 이용하여 의미 정보로 표현할 수 있도록 한다. 이를 활용하면 영상 데이터의 자동 주석 시스템이나 검색 시스템에서 인간이 인식하는 개념적인 사고방식에 더욱 접근할 수 있는 결과물을 얻을 수 있을 것이다.

  • PDF

The left ventricle wall motion simulation during systolic and diastolic stages of the heart (심장의 수축 및 이완기에서의 좌심실 벽 움직임 시뮬레이션)

  • 최수미
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.138-142
    • /
    • 1999
  • 심장의 수축 및 이완기에서의 좌심실 벽 움직임은 허혈 및 심근경색증과 같은 심장질환에서 영상적 진단의 주요한 특징이다. 심장은 동적 기관으로써 진단을 위해서는 속도와 같은 4차원 파라미터의 추정이 필요하다. 본 논문에서는 심장의 좌심실 형태 및 움직임을 모델링하여 동적으로 가시화하는 방법을 제시한다. 본 논문에서는 좌심실을 Dynamic Gaussian Blob 모델로 근사화하였다. 이 모델은 가우시안 함수 기반 FEM 요소와 superellipsoid를 통합한 것으로 좌심실의 형태 및 벽의 움직임을 물리기반 방법에 의해 묘사할 수 있다. 즉, 일련의 영상들로부터 좌심실 벽에 대응되는 3차원 점들을 추출한 후 이 점들에 작용되는 힘에 의해 박동하는 좌심실의 움직임을 추적한다. 이와 같은 좌심실 벽 움직임 시뮬레이션은 심장 움직임에 이상이 있는 질환의 진단을 위한 빠르고 간편한 보조 도구로써 사용되어질 수 있다.

  • PDF

Development of Real-Time Face Region Recognition System for City-Security CCTV (도심방범용 CCTV를 위한 실시간 얼굴 영역 인식 시스템)

  • Kim, Young-Ho;Kim, Jin-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.504-511
    • /
    • 2010
  • In this paper, we propose the face region recognition system for City-Security CCTV(Closed Circuit Television) using hippocampal neural network which is modelling of human brain's hippocampus. This system is composed of feature extraction, learning and recognition part. The feature extraction part is constructed using PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis). In the learning part, it can label the features of the image-data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in a dentate gyrus and remove the noise through the auto-associative memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are shape change and light change. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.

A Study on Synthesizing Training Data for One-stage Object Detector (단일 단계 검출 방법을 위한 이미지 합성기반 학습 데이터 증강에 관한 연구)

  • Lee, Seon-Gyeong;Jeong, Chi Yoon;Moon, KyeongDeok;Kim, Chae-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.446-450
    • /
    • 2020
  • 딥러닝 기반의 영상 분석 방법들은 많은 양의 학습 데이터가 필요하며, 학습 데이터 구축에는 많은 시간과 노력이 소요된다. 특히 객체 검출 분야의 경우 영상 내 객체의 위치, 크기, 범주 등의 정보가 모두 필요하여 학습 데이터 구축에 더 많은 어려움이 있으며, 이를 해결하기 위해 최근 이미지 합성기반 데이터 증강에 관한 연구가 활발히 진행되고 있다. 이미지 합성기반 데이터 증강 방법은 배경 영상에 객체를 합성할 때 객체와 배경 영상이 접한 영역에서 아티팩트(Artifact)가 발생하며, 이는 객체 검출 모델이 아티팩트를 객체의 특징으로 모델링하여 검출 성능이 저하되는 원인이 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 양방향 필터 기반의 이미지 합성 방법을 제안하고, 단일 단계 검출의 대표적인 방법인 RetinaNet을 이용하여 이미지 합성기반 데이터 증강 방법의 성능을 분석하였다. 공개 데이터셋에 대한 실험 결과 본 논문에서 사용한 단일 검출 방법 및 데이터 증강 기법을 사용하면 더 적은 양의 증강 데이터로 기존 방법과 동일한 성능을 보여주는 것을 확인하였다.

Region Decision Using Modified ICM Method (변형된 ICM 방식에 의한 영역판별)

  • Hwang Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.37-44
    • /
    • 2006
  • In this paper, a new version of the ICM method(MICM, modified ICM) in which the contextual information is modelled by Markov random fields (MRF) is introduced. To extract the feature, a new local MRF model with a fitting block neighbourhood is proposed. This model selects contextual information not only from the relative intensity levels but also from the geometrically directional position of neighbouring cliques. Feature extraction depends on each block's contribution to the local variance. They discriminates it into several regions, for example context and background. Boundaries between these regions are also distinctive. The proposed algerian performs segmentation using directional block fitting procedure which confines merging to spatially adjacent elements and generates a partition such that pixels in unified cluster have a homogeneous intensity level. From experiment with ink rubbed copy images(Takbon, 拓本), this method is determined to be quite effective for feature identification. In particular, the new algorithm preserves the details of the images well without over- and under-smoothing problem occurring in general iterated conditional modes (ICM). And also, it may be noted that this method is applicable to the handwriting recognition.

Panoramic Navigation using Orthogonal Cross Cylinder Mapping and Image-Segmentation Based Environment Modeling (직각 교차 실린더 매핑과 영상 분할 기반 환경 모델링을 이용한 파노라마 네비게이션)

  • 류승택;조청운;윤경현
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.138-148
    • /
    • 2003
  • Orthogonal Cross Cylinder mapping and segmentation based modeling methods have been implemented for constructing the image-based navigation system in this paper. The Orthogonal Cross Cylinder (OCC) is the object expressed by the intersection area that occurs when a cylinder is orthogonal with another. OCC mapping method eliminates the singularity effect caused in the environment maps and shows an almost even amount of area for the environment occupied by a single texel. A full-view image from a fixed point-of-view can be obtained with OCC mapping although it becomes difficult to express another image when the point-of-view has been changed. The OCC map is segmented according to the objects that form the environment and the depth value is set by the characteristics of the classified objects for the segmentation based modeling. This method can easily be implemented on an environment map and makes the environment modeling easier through extracting the depth value by the image segmentation. An environment navigation system with a full-view can be developed with these methods.

Disparity estimation using wavelet transformation and reference points (웨이블릿 변환과 기준점을 이용한 변위 추정)

  • 노윤향;고병철;변혜란;유지상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2A
    • /
    • pp.137-145
    • /
    • 2002
  • In the method of 3D modeling, stereo matching method which obtains three dimensional depth information from the two images is taken from the different view points. In general, it is very essential work for the 3D modeling from 2D stereo images to estimate the exact disparity through fading the conjugate pair of pixel from the left and right image. In this paper to solve the problems of the stereo image disparity estimation, we introduce a novel approach method to improve the exactness and efficiency of the disparity. In the first place, we perform a wavelet transformation of the stereo images and set the reference points in the image by the feature-based matching method. This reference points have very high probability over 95 %. In the base of these reference points we can decide the size of the variable block searching windows for estimating dense disparity of area based method and perform the ordering constraint to prevent mismatching. By doing this, we could estimate the disparity in a short time and solve the occlusion caused by applying the fried-sized windows and probable error caused by repeating patterns.