• Title/Summary/Keyword: 영상 특성벡터

Search Result 329, Processing Time 0.035 seconds

Sequential Motion Vector Error Concealment for H.264 Video Coding (H.264 동영상 표준 부호화 방식을 위한 순차적 움직임 벡터 오류은닉 기법)

  • Jung Jong-Woo;Kim Jae-Hoon;Hong Min-Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.79-82
    • /
    • 2004
  • 본 논문에서는 H.264 표준 통영상 부호화 방식을 위한 순차적 움직임 벡터 오류 은닉 기법을 제안한다. H.264 표준 동영상 부호화 방식에서의 움직임 예측과정이 다양한 크기의 서브 매크로 블록 모드에 따라 자기 다른 움직임 벡터 개수를 갖게 되므로 움직임 벡터는 기존의 표준 부호화 방식에 비해 상대적으로 적은 영역을 대표하게 된다. 그러므로 이웃한 블록의 움직임 벡터간의 상관관계는 서브 매크로 블록의 크기가 작을수록 더 커지게 된다. 변화된 국부 통계 특성에 대한 적응도는 $\alpha-trimed\;mean$ 필터를 이용한 부호기의 부호화 순서를 따르는 순차적 움직임 벡터 오류 은닉기법의 성능을 좌우하는 가장 중요한 부분이다. 실험 결과를 통해 제안한 방식이 실시간 동영상 전송에 적합하며 기존 방식과 유사한 성능을 보임을 확인할 수 있었다

  • PDF

Least Squares Based Adaptive Motion Vector Prediction Algorithm for Video Coding (동영상 압축 방식을 위한 최소 자승 기반 적응 움직임 벡터 예측 알고리즘)

  • Kim, Ji-hee;Jeong, Jong-woo;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1330-1336
    • /
    • 2004
  • This paper addresses an adaptive motion vector prediction algorithm to improve the performance of video encoder. The block-based motion vector is characterized by non-stationary local statistics so that the coefficients of LS (Least Squares) based linear motion can be optimized. However, it requires very expensive computational cost. The proposed algorithm using LS approach with spatially varying motion-directed property adaptively controls the coefficients of the motion predictor and reduces the computational cost as well as the motion prediction error. Experimental results show the capability of the proposed algorithm.

A Centroid-based Image Retrieval Scheme Using Centroid Situation Vector (Centroid 위치벡터를 이용한 영상 검색 기법)

  • 방상배;남재열;최재각
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.126-135
    • /
    • 2002
  • An image contains various features such as color, shape, texture and location information. When only one of those features is used to retrieve an image, it is difficult to acquire satisfactory retrieval efficiency. Especially, in the database with huge capacity, such phenomenon happens frequently. Therefore, by using moi·e features, efficiency of the contents-based image retrieval (CBIR) system can be improved. This paper proposes a technique to consider location information about specific color as well as color information in image using centroid situation vector. Centroid situation vectors are calculated for specific color of the query image. Then, location similarity is determined through comparing distances between extracted centroid situation vectors of query image and target image in the database. Simulation results show that the proposed method is robust in zoom-in or zoom-out processed images and improves discrimination ability in fliped or rotated images. In addition, the suggested method reduced computational complexity by overlapping information extraction, and that improved the retrieval speed using an efficient index file.

Image Retrieval Considering Shape Information of Projection Vector (투영 벡터의 형상 정보를 이용한 영상검색)

  • Kwon, Dong-Hyun;Yi, Tai-Hong
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.651-656
    • /
    • 2001
  • Histogram intersection method, that counts the occurrence of color pixels, is one of the easy and simple color image retrieval methods. The method has an appropriate global property but does not contain the knowledge of shape for images. The absence of spatial information makes it difficult to discriminate images of the similar histogram. The application of one-dimensional projection to each image enables to obtain shape or spatial information of image. But in this case there is another problem having different length of the projection vector according to the size of each image. Thus this paper proposes a method that uses relative distances between peaks and their maximum value in the projection vector. In order to verify retrieval performance, the experimental results between the histogram intersection method, the projection only method, and the proposed one are compared and analyzed.

  • PDF

A Block Matching using the Motion Information of Previous Frame and the Predictor Candidate Point on each Search Region (이전 프레임의 움직임 정보와 탐색 구간별 예측 후보점을 이용하는 블록 정합)

  • 곽성근;위영철;김하진
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.3
    • /
    • pp.273-281
    • /
    • 2004
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. In this paper, we propose the prediction search algorithm for block matching using the temporal correlation of the video sequence and the center-biased property of motion vectors. The proposed algorithm determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(sum of absolute difference) value by the predicted motion vector from the same block of the previous frame and the predictor candidate point on each search region. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved up to the 1.06㏈ as depend on the video sequences and improved about 0.19∼0.46㏈ on an average except the full search(FS) algorithm.

A Scene Change Detection using Motion Estimation in Animation Sequence (움직임 추정을 이용한 애니메이션 영상의 장면전환 검출)

  • Kwak, Sung-Keun
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.4
    • /
    • pp.149-156
    • /
    • 2008
  • There is the temporal correlation of a animation sequence between the motion vector of current block and the motion vector of previous block. In this paper, we propose the scene change detection algorithm for block matching using the temporal correlation of the animation sequence and the center-biased property of motion vectors. The proposed algorithm determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(sum of absolute difference) value by the predicted motion vector from the same block of the previous frame and the predictor candidate point on each search region. Simulation results show that the proposed algorithm has better detection performance, such as recall rate, then the existing method. The algorithm has the advantage of speed, simplicity and accuracy. In addition, it requires less amount of storage.

  • PDF

A Motion Estimation Method Using a New Cost Function for Frame Rate Up Conversion (프레임 율 변환을 위한 새로운 비용함수를 사용한 움직임 추정 기법)

  • Lee, Hanee;Choi, Dooseop;Wee, Seounghyun;Kim, Taejeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.613-616
    • /
    • 2010
  • 본 논문에서는 새로운 움직임 추정(motion estimation, ME) 방식을 사용한 프레임 비율 변환(frame rate conversion, FRC) 기법에 대해 제안한다. 기존의 프레임 비율 변환을 위한 움직임 추정 방식은 영상 압축에서 사용되고 있는 SAD를 사용하여 블록(block) 단위로 움직임 벡터를 추정하는 방식에 기초를 두고 있다. 그러나 잔여 신호(residual signal)를 저장하는 영상 압축과 달리, 잘못된 움직임 추정은 합성된 출력 영상에서 심각한 품질 저하를 가져올 수 있다. 이를 보완하기 위해 움직임 개선(motion refinement, MR)이 사용되고 있지만, 근본적인 해결을 위해서는 정확한 움직임 추정 알고리즘 사용이 필요하다. 특히 SAD를 통한 움직임 추정은 고르지 못한 움직임 벡터장(motion vector field, MVF)을 형성할 수 있으며, 종래의 연구에서 이를 해결하기 위해 SAD(sum of absolute difference)에 벡터의 공간제약(spatial constraint) 항목을 추가하여 비교적 고른 움직임 벡터장을 형성하는 방식이 제시되었다. SAD와 공간 제약 항목의 반영 비율에 따라 움직임 벡터의 중요성과 움직임 벡터장의 일관성이 서로 상충하는데, 기존의 방식은 이 비율을 일정한 상수(constant)값을 사용하고 있으며, 이러한 방식은 이미지의 특성에 따라 결과가 달라진다. 본 논문에서는 SAD와 공간 제약 항목 사이의 반영 비율을 이미지의 특성에 적응하는 방식을 사용하는 움직임 예측을 제시하고, 수행한 결과를 기존의 방식에 의한 결과와 비교하였다.

Recognition of character images with low-resolution and low-contrast using an associative memory (연상메모리를 이용한 저해상도 및 저대비 문자 영상 인식)

  • 정찬호;김대철;김경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.760-762
    • /
    • 2004
  • 본 논문에서는 저해상도 및 저대비의 특성을 지니는 문자 영상으로부터 특징을 추출하고 연상메모리를 이용하여 대상 문자를 인식하는 방법을 소개한다. 저해상도 영상의 이진화 과정에서 발생할 수 있는 정보의 왜곡 현상을 피하기 위하여 입력 영상의 gradient 정보를 이용하여 특징을 추출한다 저해상도 일 저대비의 특성을 지니는 문자 영상의 경우 입력 영상에 noise가 존재하거나 충분한 정보가 포함되어 있지 않은 경우 특징벡터에 상당한 왜곡을 초래하게 된다. 손상된 특징을 복원하기 위하여 연상메모리를 이용한다. 인식하고자 하는 문자 영상들의 prototype 영상들을 이용하여 연상메모리의 weight matrix를 구성한다. weight matrix를 이용해서 입력 영상이 가지는 특징과 가장 비슷한 특징을 가지는 prototype 영상의 특징벡터를 생성함으로써 손상된 특징을 복원하게 된다. 제안된 시스템을 이용하여 실험한 결과 noise가 존재하거나 정보가 충분하지 않은 입력 영상에 대해서 비교적 놀은 인식률을 얻음을 볼 수 있었다.

  • PDF

A Symmetric Motion Estimation Method by using the Properties of the Distribution of Motion Vectors (움직임 벡터 분포 특성과 블록 움직임의 특성을 이용한 대칭형 움직임 추정 기법)

  • Yoon, Hyo-Sun;Kim, Mi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.329-336
    • /
    • 2017
  • In video compression, Motion Estimation(ME) limits the performance of image quality and generated bit rates. However, it requires much complexity in the encoder part. Multi-view video uses many cameras at different positions. Multi-view video coding needs huge computational complexity in proportion to the number of the cameras. To reduce computational complexity and maintain the image quality, an effective motion estimation method is proposed in this paper. The proposed method exploiting the characteristics of motion vector distribution and the motion of video. The proposed is a kind of a hierarchical search strategy. This strategy consists of multi-grid rhombus pattern, diagonal pattern, rectangle pattern, and refinement pattern. Experiment results show that the complexity reduction of the proposed method over TZ search method and PBS (Pel Block Search) on JMVC (Joint Multiview Video Coding) can be up to 40~75% and 98% respectively while maintaining similar video image quality and generated bit rates.

Visual Object Tracking Using Superpixel-Based Graph Cuts (슈퍼픽셀 기반의 그래프 컷을 이용한 객체 추적)

  • Lee, Dae-Youn;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.64-65
    • /
    • 2013
  • 본 논문에서는 슈퍼픽셀(superpixel) 단위의 그래프 컷 알고리즘을 적용하여 객체 추적의 정확도를 향상시키기 위한 방법을 제안한다. 먼저 영상 분할 기법을 사용하여 입력 영상을 슈퍼픽셀로 분할하고 각 슈퍼픽셀에서 색상 히스토그램을 이용한 특성 벡터를 생성한다. 그리고 특성 벡터에 지지벡터기계(support vector machines)를 사용하여 각 슈퍼픽셀의 객체 확률 값을 추정한다. 객체 확률 값을 데이터 항(data term)으로, 이웃한 슈퍼픽셀 간의 특성 벡터 차 값을 스무드 항(smooth term)으로 하여, 그래프 컷(graph cuts) 알고리즘으로 슈퍼픽셀들을 객체와 배경으로 분류하고 객체 슈퍼픽셀을 최대한으로 포함하는 객체 윈도우를 찾는다. 실험 결과는 제안하는 기법이 기존 기법들보다 객체 추적 성능이 우수함을 보여준다.

  • PDF