• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.034 seconds

Salt and Pepper Noise Removal using Processed Pixels (전처리한 픽셀을 이용한 Salt and Pepper 잡음 제거)

  • Baek, Ji-Hyeon;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1076-1081
    • /
    • 2019
  • In response to the recent development of IT technologies, there are more demands for visual devices such as display. However, noise is generated in the process of sending video data due to various reasons. Noise is the representative noise which is commonly found. While A-TMF, CWMF, and AMF are the typical ways for removing Salt and Pepper noise, the noise is not removed well in high-density noise environment. To remove the noise in the high-density noise environment, this study suggested an algorithm which identifies whether it's noise or not. If it's not a noise, matches the original pixel. If it's a noise, divide the $3{\times}3$ local mask into the area of the element treated and the area of the element to be processed. Then, algorithm proposes to apply different weights for each element to treat it as an average filter. To analyze the performance of the algorithm, this study compared PSNR to compare the algorithm with other existing methods.

Noise Removal with Spatial Characteristics in Mixed Noise Environment (복합 잡음 환경에서 공간적 특성을 고려한 잡음 제거)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.254-260
    • /
    • 2019
  • Recently, the importance of signal processing has become gradually significant, as the frequency of video media increases in various fields. However, numerous kinds of noise generated in the transmission and reception processes can possibly affect the signal information, and the noise removal is for that reason essential as a preprocessing step. In this paper, we propose an algorithm to remove the mixed noise which is composed of impulse noise and AWGN. This algorithm is used for image restoration by noise judgment for efficient noise removal in a complex noise environment, and the noise is removed by considering spatial characteristics and pixel variations. Simulation results show that unlike existing methods, the algorithm has excellent noise cancellation characteristics by minimizing both noise effects and consequently eliminating the mixed noise; for objective judgment, we compared and analyzed the data using PSNR and profile.

Detection of Levee Displacement and Estimation of Vulnerability of Levee Using Remote Sening (원격탐사를 이용한 하천 제방 변위량 측정과 취약지점 선별)

  • Bang, Young Jun;Jung, Hyo Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • As a method of predicting the displacement of river levee in advance, Differential Interferometry (D-InSAR) kind of InSAR techniques was used to identify weak points in the area of the levee collapes near Gumgok Bridge (Somjin River) in Namwon City, which occurred in the summer of 2020. As a result of analyzing the displacement using five images each in the spring and summer of 2020, the Variation Index (V) of area where the collapse occurred was larger than that of the other areas, so the prognostic sysmptoms was detected. If the levee monitoring system is realized by analyzing the correlations with displacement results and hydrometeorological factors, it will overcome the existing limitations of system and advance ultra-precise, automated river levee maintenance technology and improve national disaster management.

Switching Filter using Distribution of Histogram in Salt and Pepper Noise Environments (Salt and Pepper 잡음 환경에서 히스토그램의 분포를 이용한 스위칭 필터)

  • Baek, Ji-Hyeon;Park, Jun-Mo;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.113-120
    • /
    • 2020
  • With the recent development of communication equipment, the demand for communication equipment is gradually increasing. Accordingly, various signal processing has been studied. In the case of an image, noise removal is an indispensable step because noise propagation problems may occur if noise is not removed in the pre-processing process. Salt and Pepper noise is a typical impulse noise with two extremes. Various studies have been conducted to remove such noise, and there are CWMF, MF and MMF. However, the existing methods are somewhat insufficient in the high-density noise region. Therefore, in this study, we have proposed an algorithm that filters the size of the mask according to the number of noises inside the 7×7 mask and filters it with a modified switching filter using the histogram distribution of the image. In the case of the proposed algorithm, noise can be effectively removed in a high-density noise region. For objective judgment, PSNR was used to compare and analyze with existing algorithms.

Automatic Anatomical Classification Model of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks for Guiding Endoscopic Photodocumentation

  • Park, Jung-Whan;Kim, Yoon;Kim, Woo-Jin;Nam, Seung-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.19-28
    • /
    • 2021
  • Esophagogastroduodenoscopy is a method commonly used for early diagnosis of upper gastrointestinal lesions. However, 10-20 percent of the gastric lesions are reported to be missed, due to human error. And countries including the US, the UK, and Japan, the World Endoscopy Organization (WEO) suggested guidelines about essential gastrointestinal parts to take pictures of so that all gastric lesions are observed. In this paper, we propose deep learning techniques for classification of anatomical sites, aiming for the system that informs practitioners whether they successfully did the gastroscopy without blind spots. The proposed model uses pre-processing modules and data augmentation techniques suitable for gastroscopy images. Not only does the experiment result with a maximum F1 score of 99.6%, but it also shows a error rate of less than 4% based on the actual data. Given the performance results, we found the model to be explainable with the potential to be utilized in the clinical area.

A Study on Disease Prediction of Paralichthys Olivaceus using Deep Learning Technique (딥러닝 기술을 이용한 넙치의 질병 예측 연구)

  • Son, Hyun Seung;Lim, Han Kyu;Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.62-68
    • /
    • 2022
  • To prevent the spread of disease in aquaculture, it is a need for a system to predict fish diseases while monitoring the water quality environment and the status of growing fish in real time. The existing research in predicting fish disease were image processing techniques. Recently, there have been more studies on disease prediction methods through deep learning techniques. This paper introduces the research results on how to predict diseases of Paralichthys Olivaceus with deep learning technology in aquaculture. The method enhances the performance of disease detection rates by including data augmentation and pre-processing in camera images collected from aquaculture. In this method, it is expected that early detection of disease fish will prevent fishery disasters such as mass closure of fish in aquaculture and reduce the damage of the spread of diseases to local aquaculture to prevent the decline in sales.

A Trend Analysis of Radiological Research in Korea using Topic Modeling (토픽모델링을 이용한 국내 방사선 학술연구 트렌드 분석)

  • Hong, Dong-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.343-349
    • /
    • 2022
  • We intend to use topic modeling to identify radiation-themed papers published from 1989 to 2022 and analyze the relevance and weight between topics. This study analyzed topics derived from national subjects for 717 papers published until recently in 2022 to contribute to the revitalization of research in the field of radiation. Through text mining, overall research trends on the subject distribution of the study were analyzed, and five topics were derived through topic modeling. First, among the papers to be analyzed, a total of 1,675 words were frequency-analyzed through the preprocessing process of key words in a total of 717 papers centered on keywords. Second, as a result of analyzing topics based on the association of constituent words for five topics, it was found that studies focused on minimizing dose in the range that does not degrade image quality in the fields of radiation, image, CT clinical. In addition, it was found that various studies were mainly conducted in the MRI, and the study of ultrasound in various areas of disease analysis was actively attempted.

Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders (심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법)

  • K. Dilusha Malintha De Silva;Hyo Jong Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.243-252
    • /
    • 2023
  • Satellite imageries are at a greatest importance for land cover examining. Numerous studies have been conducted with satellite images and uses semantic segmentation techniques to extract information which has higher altitude viewpoint. The device which is taking these images must employee wireless communication links to send them to receiving ground stations. Wireless communications from a satellite are inevitably affected due to transmission errors. Evidently images which are being transmitted are distorted because of the information loss. Current semantic segmentation techniques are not made for segmenting distorted images. Traditional image enhancement methods have their own limitations when they are used for satellite images enhancement. This paper proposes an auto-encoder based image pre-enhancing method for satellite images. As a distorted satellite images dataset, images received from a real radio transmitter were used. Training process of the proposed auto-encoder was done by letting it learn to produce a proper approximation of the source image which was sent by the image transmitter. Unlike traditional image enhancing methods, the proposed method was able to provide more applicable image to a segmentation model. Results showed that by using the proposed pre-enhancing technique, segmentation results have been greatly improved. Enhancements made to the aerial images are contributed the correct assessment of land resources.

Imitations Detection by Image Processing (영상처리에 의한 위조 상품의 검출)

  • Cho, Dong-Uk
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.711-714
    • /
    • 2002
  • 본 논문에서는 유명 상표를 위조하여 모조 상품을 만들어 이를 유통시키는 것에 대해 대처하기 위한 위조 상품 검출 시스템 구축에 대해 논하고자 한다. 통상 위조 제품(이미테이션)은 금형에 위한 상표와 부착된 상품의 위조가 주된 위조 방법이기 때문에 이의 특징을 추출하여 위조 제품을 검출하는 것이 중요한 방법이 된다. 이를 위해 전처리과정을 수행하여 상표가 있는 위치를 검출하여 이의 특징추출과 정합이 주된 식별 방법이 되며 본 논문에서는 이를 제안하고자 한다. 우선적으로 유명신발인 '헤르메스'에 대해 연구를 수행하였으며 차후 이에 대한 실험과 유명신발 뿐이 아닌 다양한 형태의 상품에 대한 고찰 및 특징 벡터 선정 등에 대해 지속적인 연구를 수행하고자 한다.

  • PDF

Analyzing Preprocessing for Correcting Lighting Effects in Hyperspectral Images (초분광영상의 조명효과 보정 전처리기법 분석)

  • Yeong-Sun Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.785-792
    • /
    • 2023
  • Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.