• Title/Summary/Keyword: 영상 전처리

Search Result 1,109, Processing Time 0.026 seconds

A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features (특징의 효과적 병합에 의한 광고영상정보의 분류 기법)

  • Jeong, Jae-Kyong;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.66-77
    • /
    • 2011
  • We propose a framework for grouping photographic advertising images that employs a hierarchical indexing scheme based on efficient feature combinations. The study provides one specific application of effective tools for monitoring photographic advertising information through online and offline channels. Specifically, it develops a preprocessor for advertising image information tracking. We consider both global features that contain general information on the overall image and local features that are based on local image characteristics. The developed local features are invariant under image rotation and scale, the addition of noise, and change in illumination. Thus, they successfully achieve reliable matching between different views of a scene across affine transformations and exhibit high accuracy in the search for matched pairs of identical images. The method works with global features in advance to organize coarse clusters that consist of several image groups among the image data and then executes fine matching with local features within each cluster to construct elaborate clusters that are separated by identical image groups. In order to decrease the computational time, we apply a conventional clustering method to group images together that are similar in their global characteristics in order to overcome the drawback of excessive time for fine matching time by using local features between identical images.

The Study on Optimal Image Processing and Identifying Threshold Values for Enhancing the Accuracy of Damage Information from Natural Disasters (자연재해 피해정보 산출의 정확도 향상을 위한 최적 영상처리 및 임계치 결정에 관한 연구)

  • Seo, Jung-Taek;Kim, Kye-Hyun
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.1-11
    • /
    • 2011
  • This study mainly focused on the method of accurately extracting damage information in the im agery change detection process using the constructed high resolution aerial im agery. Bongwha-gun in Gyungsangbuk-do which had been severely damaged from a localized torrential downpour at the end of July, 2008 was selected as study area. This study utilized aerial im agery having photographing scale of 30cm gray image of pre-disaster and 40cm color image of post-disaster. In order to correct errors from the differences of the image resolution of pre-/post-disaster and time series, the prelim inary phase of image processing techniques such as normalizing, contrast enhancement and equalizing were applied to reduce errors. The extent of the damage was calculated using one to one comparison of the intensity of each pixel of pre-/post-disaster im aged. In this step, threshold values which facilitate to extract the extent that damage investigator wants were applied by setting difference values of the intensity of pixel of pre-/post-disaster. The accuracy of optimal image processing and the result of threshold values were verified using the error matrix. The results of the study enabled the early exaction of the extents of the damages using the aerial imagery with identical characteristics. It was also possible to apply to various damage items for imagery change detection in case of utilizing multi-band im agery. Furthermore, more quantitative estimation of the dam ages would be possible with the use of numerous GIS layers such as land cover and cadastral maps.

A Study on the Dynamic Binary Fingerprint Recognition Method using Artificial Intelligence (인공지능기법을 이용한 동적 이진화 지문인식 방법에 관한 연구)

  • Kang, Jong-Yoon;Lee, Joo-Sang;Lee, Jae-Hyun;Kong, Suk-Min;Kim, Dong-Han;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • Among the procedure of automatic fingerprint recognition, binary code is important for the optimum thinning and singular point extraction while reserving the fingerprint image data. Binarization is to convert gray scale images into 0s and 255s values. For this conversion, you should set up the proper threshold value not to lose fingerprint image data. In this paper, we suggest the method to extract the standard threshold in real-time from fingerprint images entered by applying artificial intelligent methods in the binary code procedure. We show improved features while comparing the experiment results with the existing methods.

Detection of Bacteria in Blood in Darkfield Microscopy Image (암시야 현미경 영상에서 혈액 내 박테리아 검출 방법)

  • Park, Hyun-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.183-185
    • /
    • 2021
  • Detecting bacteria in blood could be an important research area in medicine and computer vision. In this paper, we propose a method for detecting bacteria in blood from 366 darkfield microscopy images acquired at Kaggle. Generate a training dataset through preprocessing and data augmentation using image processing techniques, and define a deep learning model for learning it. As a result of the experiment, it was confirmed that the proposed deep learning model effectively detects red blood cells and bacteria in darkfield microscopy images. In this paper, we learned using a relatively simple model, but it seems that more accurate results can be obtained by using a deeper model.

  • PDF

Compensation Method for Occluded-region of Arbitrary-view Image Synthesized from Multi-view Video (다시점 동영상에서 임의시점영상 생성을 위한 가려진 영역 보상기법)

  • Park, Se-Hwan;Song, Hyuk;Jang, Eun-Young;Hur, Nam-Ho;Kim, Jin-Woong;Kim, Jin-Soo;Lee, Sang-Hun;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1029-1038
    • /
    • 2008
  • In this paper, we propose a method for an arbitrary-view image generation in multi-view video and methods for pre- and post-processing to compensate unattended regions in the generated image. To generate an arbitrary-view image, camera geometry is used. Three dimensional coordinates of image pixels can be obtained by using depth information of multi-view video and parameter information of multi-view cameras, and by replacing three dimensional coordinates on a two dimensional image plane of other view, arbitrary-view image can be reconstructed. However, the generated arbitrary-view image contains many unattended regions. In this paper, we also proposed a method for compensating these regions considering temporal redundancy and spatial direction of an image and an error of acquired multi-view image and depth information. Test results show that we could obtain a reliably synthesized view-image with objective measurement of PSNR more than 30dB and subjective estimation of DSCQS(double stimulus continuous quality scale method) more than 3.5 point.

Speech Activity Detection using Lip Movement Image Signals (입술 움직임 영상 선호를 이용한 음성 구간 검출)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • In this paper, A method to prevent the external acoustic noise from being misrecognized as the speech recognition object is presented in the speech activity detection process for the speech recognition. Also this paper confirmed besides the acoustic energy to the lip movement image signals. First of all, the successive images are obtained through the image camera for personal computer and the lip movement whether or not is discriminated. The next, the lip movement image signal data is stored in the shared memory and shares with the speech recognition process. In the mean time, the acoustic energy whether or not by the utterance of a speaker is verified by confirming data stored in the shared memory in the speech activity detection process which is the preprocess phase of the speech recognition. Finally, as a experimental result of linking the speech recognition processor and the image processor, it is confirmed to be normal progression to the output of the speech recognition result if face to the image camera and speak. On the other hand, it is confirmed not to the output the result of the speech recognition if does not face to the image camera and speak. Also, the initial feature values under off-line are replaced by them. Similarly, the initial template image captured while off-line is replaced with a template image captured under on-line, so the discrimination of the lip movement image tracking is raised. An image processing test bed was implemented to confirm the lip movement image tracking process visually and to analyze the related parameters on a real-time basis. As a result of linking the speech and image processing system, the interworking rate shows 99.3% in the various illumination environments.

Line Edge-Based Type-Specific Corner Points Extraction for the Analysis of Table Form Document Structure (표 서식 문서의 구조 분석을 위한 선분 에지 기반의 유형별 꼭짓점 검출)

  • Jung, Jae-young
    • Journal of Digital Contents Society
    • /
    • v.15 no.2
    • /
    • pp.209-217
    • /
    • 2014
  • It is very important to classify a lot of table-form documents into the same type of classes or to extract information filled in the template automatically. For these, it is necessary to accurately analyze table-form structure. This paper proposes an algorithm to extract corner points based on line edge segments and to classify the type of junction from table-form images. The algorithm preprocesses image through binarization, skew correction, deletion of isolated small area of black color because that they are probably generated by noises.. And then, it processes detections of edge block, line edges from a edge block, corner points. The extracted corner points are classified as 9 types of junction based on the combination of horizontal/vertical line edge segments in a block. The proposed method is applied to the several unconstraint document images such as tax form, transaction receipt, ordinary document containing tables, etc. The experimental results show that the performance of point detection is over 99%. Considering that almost corner points make a correspondence pair in the table, the information of type of corner and width of line may be useful to analyse the structure of table-form document.

Improved Polynomial Model for Multi-View Image Color Correction (다시점 영상 색상 보정을 위한 개선된 다항식 모델)

  • Jung, Jae-Il;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.881-886
    • /
    • 2013
  • Even though a multi-view camera system is able to capture multiple images at different viewpoints, the color distributions of captured multi-view images can be inconsistent. This problem decreases the quality of multi-view images and the performance of post-image processes. In this paper, we propose an improved polynomial model for effectively correcting the color inconsistency problem. This algorithm is fully automatic without any pre-process and considers occlusion regions of the multi-view image. We use the 5th order polynomial model to define a relative mapping curve between reference and source views. Sometimes the estimated curve is seriously distorted if the dynamic range of extracted correspondences is quite low. Therefore we additionally estimate the first order polynomial model for the bottom and top regions of the dynamic range. Afterwards, colors of the source view are modified via these models. The proposed algorithm shows the good subjective results and has better objective quality than the conventional color correction algorithms.

Improved Parallel Thinning Algorithm for Fingerprint image Processing (지문영상 처리를 위한 개선된 병렬 세선화 알고리즘)

  • 권준식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.73-81
    • /
    • 2004
  • To extract the creditable features in fingerprint image, many people use the thinning algorithm that has a very important position in the preprocessing. In this paper, we propose the robust parallel thinning algorithm that can preserve the connectivity of the binarized fingerprint image, make the thinnest skeleton with 1-pixel width and get near to the medial axis extremely. The proposed thinning method repeats three sub-iterations. The first sub-iteration takes off only the outer boundary pixel by using the interior points. To extract the one side skeletons, the second sub-iteration finds the skeletons with 2-pixel width. The third sub-iteration prunes the needless pixels with 2-pixel width existing in the obtained skeletons and then the proposed thinning algorithm has the robustness against the rotation and noise and can make the balanced medial axis. To evaluate the performance of the proposed thinning algorithm we compare with and analyze the previous algorithms.

Super-Pixel-Based Segmentation and Classification for UAV Image (슈퍼 픽셀기반 무인항공 영상 영역분할 및 분류)

  • Kim, In-Kyu;Hwang, Seung-Jun;Na, Jong-Pil;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Recently UAV(unmanned aerial vehicle) is frequently used not only for military purpose but also for civil purpose. UAV automatically navigates following the coordinates input in advance using GPS information. However it is impossible when GPS cannot be received because of jamming or external interference. In order to solve this problem, we propose a real-time segmentation and classification algorithm for the specific regions from UAV image in this paper. We use the super-pixels algorithm using graph-based image segmentation as a pre-processing stage for the feature extraction. We choose the most ideal model by analyzing various color models and mixture color models. Also, we use support vector machine for classification, which is one of the machine learning algorithms and can use small quantity of training data. 18 color and texture feature vectors are extracted from the UAV image, then 3 classes of regions; river, vinyl house, rice filed are classified in real-time through training and prediction processes.