• 제목/요약/키워드: 영상 전처리

Search Result 1,103, Processing Time 0.03 seconds

Learning of Rules for Edge Detection of Image using Fuzzy Classifier System (퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습)

  • 정치선;반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.252-259
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection of a image. The FCS is based on the fuzzy logic system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. There are two different approaches, Michigan and Pittsburgh approaches, to acquire appropriate fuzzy rules by evolutionary computation. In this paper, we use the Michigan style in which a single fuzzy if-then rule is coded as an individual. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. The proposed method is evaluated by applying it to the edge detection of a gray-level image that is a pre-processing step of the computer vision. the differences of average gray-level of the each vertical/horizontal arrays of neighborhood pixels are represented into fuzzy sets, and then the center pixel is decided whether it is edge pixel or not using fuzzy if-then rules. We compare the resulting image with a conventional edge image obtained by the other edge detection method such as Sobel edge detection.

  • PDF

Multi Characters Detection Using Color Segmentation and LoG operator characteristics in Natural Scene (자연영상에서 컬러분할과 LoG연산특성을 이용한 다중 문자 검출에 관한 연구)

  • Shin, Seong;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.216-222
    • /
    • 2008
  • This paper proposed the multi characters detection algorithm using Color segmentation and the closing curve feature of LoG Operator in order to complement the demerit of the existing research which is weak in complexity of background, variety of light and disordered line and similarity of left and background color, etc. The proposed multi characters detection algorithm divided into three parts : The feature detection, characters format and characters detection Parts in order to be possible to apply to image of various feature. After preprocess that the new multi characters detection algorithm that proposed in this paper used wavelet, morphology, hough transform which is the synthesis logical model in order to raise detection rate by acquiring the non-perfection characters as well as the perfection characters with processing OR operation after processing each color area by AND operation sequentially. And the proposal algorithm is simulated with natural images which include natural character area regardless of size, resolution and slant and so on of image. And the proposal algorithm in this paper is confirmed to an excellent detection rate by compared with the conventional detection algorithm in same image.

The High-Speed Extraction of Interest Region in the Parcel Image of Large Size (대용량 소포영상에서 관심영역 고속추출 방법에 관한 연구)

  • Park, Moon-Sung;Bak, Sang-Eun;Kim, In-Soo;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.691-702
    • /
    • 2004
  • In this paper, we propose a sequence of method which extrats ROIs(Region of Interests) rapidly from the parcel image of large size. In the proposed method, original image is spilt into the small masks, and the meaningful masks, the ROIs, are extracted by two criterions sequentially The first criterion is difference of pixel value between Inner points, and the second is deviation of it. After processing, some informational ROIs-the areas of bar code, characters, label and the outline of object-are acquired. Using diagonal axis of each ROI and the feature of various 2D bar code, the area of 2D bar code can be extracted from the ROIs. From an experiment using above methods, various ROIs are extracted less than 200msec from large-size parcel image, and 2D bar code region is selected by the accuracy of 100%.

Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image (RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할)

  • Yang, Hyuk Jin;Kim, Dong Hyun;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1603-1613
    • /
    • 2017
  • This paper proposes a method for effectively segmenting the hand region using a widely popular RGB color-based webcam. This performs the empirical preprocessing method four times to remove the noise. First, we use Gaussian smoothing to remove the overall image noise. Next, the RGB image is converted into the HSV and the YCbCr color model, and global fixed binarization is performed based on the statistical value for each color model, and the noise is removed by the bitwise-OR operation. Then, RDP and flood fill algorithms are used to perform contour approximation and inner area fill operations to remove noise. Finally, ROI (hand region) is selected by eliminating noise through morphological operation and determining a threshold value proportional to the image size. This study focuses on the noise reduction and can be used as a base technology of gesture recognition application.

Key Frame Extraction and Region Segmentation-based Video Retrieval in Compressed Domain (압축영역에서의 대표프레임 추출 및 영역분할기반 비디오 검색 기법)

  • 강응관;김성주;송호근;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1713-1720
    • /
    • 1999
  • This paper presents a new key frame extraction technique, for scene change detection, using the proposed AHIM (Accumulative Histogram Intersection Measure) from the DC image constructed by DCT DC coefficients in the compressed video sequence that is video compression standard such as MPEG. For fast content-based browsing and video retrieval in a video database, we also provide a novel coarse-to-fine video indexing scheme. In the extracted key frame, we perform the region segmentation as a preprocessing. First, the segmented image is projected with the horizontal direction, then we transform the result into a histogram, which is saved as a database index. In the second step, we calculate the moments and change them into a distance value. From the simulation results, the proposed method clearly shows the validity and superiority in respect of computation time and memory space, and that in conjunction with other techniques for indexing, such as color, can provide a powerful framework for image indexing and retrieval.

  • PDF

Head Pose Estimation with Accumulated Historgram and Random Forest (누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정)

  • Mun, Sung Hee;Lee, Chil woo
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.

Realistic and Fast Depth-of-Field Rendering in Direct Volume Rendering (직접 볼륨 렌더링에서 사실적인 고속 피사계 심도 렌더링)

  • Kang, Jiseon;Lee, Jeongjin;Shin, Yeong-Gil;Kim, Bohyoung
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • Direct volume rendering is a widely used method for visualizing three-dimensional volume data such as medical images. This paper proposes a method for applying depth-of-field effects to volume ray-casting to enable more realistic depth-of-filed rendering in direct volume rendering. The proposed method exploits a camera model based on the human perceptual model and can obtain realistic images with a limited number of rays using jittered lens sampling. It also enables interactive exploration of volume data by on-the-fly calculating depth-of-field in the GPU pipeline without preprocessing. In the experiment with various data including medical images, we demonstrated that depth-of-field images with better depth perception were generated 2.6 to 4 times faster than the conventional method.

Weighted Filter based on Standard Deviation for Impulse Noise Removal (임펄스 잡음 제거를 위한 표준편차 기반의 가중치 필터)

  • Cheon, Bong-Won;Kim, Woo-Young;Sagong, Byung-Il;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.213-215
    • /
    • 2021
  • With the development of IoT technology, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. In particular, a system based on a digital image may cause a malfunction due to noise in the image due to a sensor defect or a communication environment problem. Therefore, research on image processing has been continued as a pre-processing process, and an effective noise reduction technique is required depending on the type of noise and the characteristics of the image. In this paper, we propose a modified spatial weight filter to protect edge components in the impulse noise reduction process. The proposed algorithm divides the filtering mask into four regions and calculates the standard deviation of each region. The final output was filtered by applying a spatial weight to the region with the lowest standard deviation value. Simulation was conducted to evaluate the performance of the proposed algorithm, and it showed superior impulse noise reduction performance compared to the existing method.

  • PDF

Estimation of spatiotemporal soil moisture distribution for Yongdam-dam watershed using Sentinel-1 C-band Synthetic Aperture Radar images (Sentinel-1 C-band SAR 영상을 이용한 용담댐 유역의 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.162-162
    • /
    • 2020
  • 토양수분은 TDR(Time Domain Reflectometry)이나 Tensiometer 등의 장비를 이용하여 측정을 시행하고 있으나, 이를 위해서는 많은 인력과 경제적 자원이 소비될 뿐만 아니라 시공간적으로 측정할 수 있는 범위에 한계가 있다. 지상 관측의 대안으로 MIRAS(Microwave Imaging Radiometer with Aperture Synthesis)나 SMAP(Soil Moisture Active Passive), AMSR2(Advanced Microwave Scanning Radiometer 2) 등의 수동 마이크로파 위성 센서를 이용한 공간 토양수분 관측이 수행되었으나, 낮은 공간 해상도(9~36km)는 지역 규모의 토양수분 분포를 나타내기 충분하지 않고, 높은 불확실성을 내포하고 있다. 본 연구에서는 금강 상류의 용담댐 유역(930.0㎢)을 대상으로 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 영상을 이용한 토지 피복 및 토양 속성을 고려한 10m 해상도의 토양수분 산출을 수행하였다. 용담댐 유역은 산림 79.7%, 논 9.0%, 밭 5.4%, 주거지 2.9%의 토지 피복 비율을 가지며 토양은 사양토(66.6%)와 양토(20.9%)가 우세하다. Sentinel-1 C-band SAR 영상은 SeNtinel Application Platform(SNAP)을 이용하여 전처리 후, 후방산란계수로 변환하였다. 토양수분 알고리즘은 TU-Wien change detection algorithm과 Regression model을 활용하였고, 검증을 위한 실측 토양수분 자료는 한국수자원공사(K-water)에서 제공하는 5년(2014~2018)간의 토양수분 관측자료를 이용하였다. 산출된 토양수분은 결정계수(Coefficient of determination, R2) 및 평균제곱근오차(Root Mean Square Error, RMSE)를 이용하여 실측 토양수분과 비교하였다. Sentinel-1 C-band SAR 영상을 이용한 고해상도의 토양수분 산출은 토지 피복 및 토양 속성을 고려한 지역 규모의 공간 토양수분 분포 및 시간적 변화를 표현 가능할 것으로 판단된다.

  • PDF

Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments (AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.250-252
    • /
    • 2022
  • Recently, with the development of IoT technology and AI, unmanned and automated systems are progressing in various fields, and various application technologies are being studied in systems using algorithms such as object detection, recognition, and tracking. In the case of a system operating based on an image, noise removal is performed as a pre-processing process, and precise noise removal is sometimes required depending on the environment of the system. In this paper, we propose a modified central weight filter algorithm using pixel division of local regions to minimize the blurring that tends to occur in the filtering process and to emphasize the details of the resulting image. In the proposed algorithm, when a pixel of a local area is divided into two areas, the center of the dominant area among the divided areas is set as a criterion for the weight filter algorithm. The resulting image is calculated by convolving the transformed center weight with the pixel value inside the filtering mask.

  • PDF