• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.052 seconds

Three Dimensional Buildings Reconstruction Using LIDAR Data (LIDAR 자료를 이용한 3차원 건물 복원)

  • Kim, Seong-Sam;Yeu, Bock-Mo;Yoo, Hwan-Hee
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.281-286
    • /
    • 2005
  • 여러 분야에서 활용성이 증가하고 있는 도시지역에 대한 3차원 모형화 구축은 기존에는 항공사진이나 고해상도 위성영상을 주로 활용하여 왔으나, 최근에는 높은 정밀도를 보장하는 항공LIDAR 측량기법에 대한 연구가 활발히 진행되고 있다. 특히, 다양한 형태, 크기, 종류의 건물들이 존재하는 광범위한 도시지역을 모형화 하기 위하여 정밀도가 높은 LIDAR 자료를 통하여 신속하고 정확하게 현실에 가까운 건물 모형으로 복원하는 기술 개발이 요구되고 있다. 본 연구에서는 LIDAR 관측자료 및 디지털 영상, 수치지도 등의 자료를 활용하여 LIDAR자료의 전처리 과정과 다양한 필터를 적용하여 지면과 비지면 정보를 분류하였으며, LoG 연산자에 의한 건물 경계선 및 특징점 추출기법을 개발하여 도시 지역의 3차원 건물 복원기법을 제안하였다.

  • PDF

Human Iris Verification Using Similarity between Feature Vectors (특징벡터간의 유사도 측정을 통한 홍채 검증)

  • 이종인;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.297-300
    • /
    • 2000
  • 현재 연구되어지고 있는 홍채인식 시스템의 일반적인 구성을 보면 영상획득, 전처리, 특징추출, 인식/검증의 네 단계를 거치게 된다. 이 과정에서 최후 본인여부의 판단이 내려지는 것은 인식/검증의 마지막 단계인데, 전체 등록된 사용자의 수가 적을 경우 인식 방법을 통해 사용자를 확인할 수 있게 되어 그 정확도가 상당히 높을 수 있다. 하지만 등록된 사용자의 수가 많은 경우 인식방법에는 무리가 따르게 된다. 이에 따라 전자상거래와 같은 다수의 사용자를 보유하게 되는 시스템에서는 사용자 아이디를 함께 입력받아 본인 여부를 판단하는 검증 방법을 사용하는 것이 빠르고 효과적이라 할 수 있다. 본 논문에서는 기존에 사용되어지던 특징벡터의 일치율 또는 해밍 거리를 통한 검증방법에서 나아가 저용량 특징벡터에 적합하도록, 홍채영상으로부터 추출된 특징에 대해 적절한 양자화와 가중치를 두어 각 특징벡터 간의 내적을 통해 유사도를 측정함으로써 본인의 데이터와 타인의 데이터간의 차이를 크게 하여 향상된 성능의 홍채인식 시스템을 구현하는 방법을 제안한다.

  • PDF

Detection of Oscillation Mark in Slab Surface (슬라브(Slab) 표면에서 오실레이션 마크(Oscillaton mark) 검출 알고리즘)

  • Jeon, Yong-Ju;Yun, Jong-Pil;Choi, Doo-Chul;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1804_1805
    • /
    • 2009
  • 최근 여러 산업 분야에서는 품질의 향상과 생산성을 높이기 위해 자동화 검사 장치 개발이 활발하게 연구 되고 있다. 본 연구에서는 비전을 이용한 신뢰도 높은 슬라브(Slab) 표면 검사 자동화 알고리즘의 전처리 단계인 오실레이션 마크(Oscillation mark) 검출을 목표로 한다. 슬라브 영상의 경우 조업시에 발생하는 산화 물질인 스케일(Scale)이 영상 전체에 분포하고 있으며, 이러한 스케일은 형태적 특징 및 밝기 특징이 일정치 않기 때문에 오실레이션 마크 검출 성능을 저하 시킨다. 따라서 스케일의 영향을 최소화 하고 효과적으로 오실레이션 마크를 검출하기 위해 가버 필터(Gabor filter)와 수직 투영 프로파일(Vertical projection profile)을 이용한 노이즈 제거 방법을 사용한다.

  • PDF

Association analysis using the adjacent feature point Ridge Extraction algorithm (인접 융선과의 연관성 분석을 통한 특징점 추출 알고리즘)

  • Kim, You Young;Kim, Jong Min;Kim, Young Hoo;Kim, Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.339-341
    • /
    • 2015
  • 지문 인식 시스템의 인식을 위한 등록점으로 융선의 단점과 분기점에 관하여 연구하였다. 원 지문 영상은 전처리 과정을 거치게 되면서 잘못된 특징점을 포함하게 되며 이는 지문 인식 시스템의 효율성을 감소시키는 원인이 될 수 있다. 따라서 세선화된 지문 영상으로부터 후보 특징점을 추출한 후 연결성 탐색 정보를 이용하여 의사 특징점을 제거할 수 있는 알고리즘을 제안한다.

  • PDF

A comparative study of Depth Preprocessing Method for 3D Data Service Based on Depth Image Based Rendering over T-DMB (지상파 DMB에서의 깊이 영상 기반 렌더링 기반의 3차원 서비스를 위한 깊이 영상 전처리 기술의 비교 연구)

  • Oh, Young-Jin;Jung, Kwang-Hee;Kim, Joong-Kyu;Lee, Gwang-Soon;Lee, Hyun;Hur, Nam-Ho;Kim, Jin-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.815-816
    • /
    • 2008
  • In this paper, we evaluate depth image preprocessing for 3D data service based on DIBR over T-DMB. We evaluate two preprocessing methods of depth images. These are gaussian smoothing and adaptive smoothing. The results show that adaptive smoothing is more suitable for images with sharp transition of depth.

  • PDF

Emotion Recognition System based Deep Learning (딥 러닝 기반 감정인식 시스템 개발)

  • Lee, Min Kyu;Kim, Dae Ha;Choi, Dong Yoon;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.16-18
    • /
    • 2017
  • 최근 딥 러닝의 발전으로 얼굴인식뿐만 아니라 더 세부적인 기술인 ID식별, 감정인식 등을 분류할 수 있는 알고리즘이 많이 제안되었다. 하지만 딥 러닝은 방대한 연산량을 처리해야 하기 때문에 실시간으로 영상을 구현하는 것은 한계가 있다. 본 논문은 위와 같은 문제를 개선하기 위하여 얼굴인식은 연산량이 비교적 적은 HOG알고리즘을 적용하여 전처리를 진행한다. 그 이후 ID식별 네트워크인 FaceNet과 EmotiW 2017 Challenge의 논문의 감정인식 네트워크를 Multi-Thread 기술을 적용하여 스레드를 분할 연산을 통하여 실시간으로 영상을 출력하는 알고리즘을 제안한다.

  • PDF

A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures (PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

The Edge Detector Using Wavelet Transform developed for Heavy Noised Images. (심한 잡음성 영상의 경계선 검출을 위한 웨이블릿 변환 이용 검출기 개발)

  • 이혜성;변혜란;유지상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.464-466
    • /
    • 1998
  • 경계선 검출은 시각 인식 또는 기계 시각 인식의 과정에서 제일 먼저 수행되는 전처리 단계이다. 경계선 검출은 컴퓨터 시각 인식성능에 매우 중대한 요인으로 작용한다. 최근 MPEG-4에서 Model Based Coding 기법이 채택되면서, 경계선 검출 및 이를 이용한 컴퓨터 시각 인식의 중요성은 날로 커지고 있다. 한편, 잡음이 있는 영상의 경계선 검출 방법으로 여러 가지가 제시되었는데, 특히 잡음의 종류가 Additive White Gaussian인 경우에는 Canny Edge Detector가, Impulse인 경우에는 Dual Stack Filter를 적용한 방법이 각각 높은 성능으로 인정을 받고 있다. 그러나 Canny Edge Detector의 경우, Canny는 이론적인 Optimal Filter를 구하는 데에 성공하였지만 실제 적용에는, 이 Optimal Filter의 근사로써 Gauss함수의 1계 도함수를 사용하였다. 본 연구에서는 Gauss함수보다는 상당히 Optimal Filter와 가까운 Filter를 얻기 위하여 웨이블릿 변환을 사용한 Liao등의 방법과, 각기 다른 Scale에서의 웨이블릿 변환들이 가지는 잡음과의 관계를 고려한 새로운 경계선 검출방법을 개발하였다. 실험결과, 본 연구에서의 방법은 기존에 사용되던 Canny Edge Detector나 Stochastic Operator보다 뛰어난 성능을 보여주었다.

  • PDF

A System for the Decomposition of Text Block into Words (텍스트 영역에 대한 단어 단위 분할 시스템)

  • Jeong, Chang-Boo;Kwag, Hee-Kue;Jeong, Seon-Hwa;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 주제어 인식에 기반한 문서영상의 검색 및 색인 시스템에 적용하기 위한 단어 단위 분한 시스템을 제안한다. 제안 시스템은 영상 전처리, 문서 구조 분석을 통해 추출된 텍스트 영역을 입력으로 단어 단위 분할을 수행하는데, 텍스트 영역에 대해 텍스트 라인을 분할하고 분할된 텍스트 라인을 단어 단위로 분할하는 계층적 접근 방법을 사용한다. 텍스트라인 분할은 수평 방향 투영 프로파일을 적용하여 분할 지점을 구한다. 그리고 단어 분할은 연결요소들을 추출한 후 연결요소간의 gap 정보를 구하고, gap 군집화 기법을 사용하여 단어 단위 분한 지점을 구한다. 이때 단어 단위 분할의 성능을 저하시키는 특수기호에 대해서는 휴리스틱 정보를 이용하여 검출한다. 제안 시스템의 성능 평가는 50개의 텍스트 영역에 적용하여 99.83%의 정확도를 얻을 수 있었다.

  • PDF

A License Plate Recognition Using Intensity Variation and Hybrid Pattern Vector (명암도 변화값과 하이브리드 패턴 벡터를 이용한 번호판 인식)

  • 석영수;김정훈;이응주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.153-156
    • /
    • 2001
  • 본 논문에서는 하이브리드 패턴 벡터를 이용하여 차량 번호를 실시간으로 인식하는 알고리즘을 제안하였다. 차량 입력 영상에서 전처리 과정을 거쳐 번호판의 수평 및 수직 명암값 빈도수 변화를 이용해 번호판 영역을 추출하고 하이브리드 패턴을 적용해 더 정확한 번호판 문자 및 숫자를 인식하는 알고리즘을 제안하였다. 제안한 알고리즘의 번호판 추출 과정에서는 번호판 영역의 문자와 배경이 뚜렷하게 구별되는 특성 및 번호 판 영역의 상대적인 크기의 특성과 수평 및 수직 빈도 수를 추하여 입력된 차량영상에서 번호판 영역을 추출한다. 또한 번호판 영역에서 잡음 제거와 세선화(Thinning)를 적용해 문자 및 숫자를 하이브리드 패턴 벡터를 적용하여 문자의 크기, 문자와 문자 사이의 밀집도의 특성, 이동에 무관한 특성을 이용해 차량 번호를 인식하는 알고리즘을 제안하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴 벡터 보다 훨씬 계산 속도가 빠르며, 차량 번호판의 크기에 관계없이 잡음에 영향을 받지 않고 차량 번호를 실시간으로 처리할 수 있는 가능성을 제시하였고, 번호판 영역이 불규칙한 조명 상태에서도 더 정확한 차량 번호를 인식 할 수 있는 알고리즘을 본 논문에서 제안하였다.

  • PDF