Kim, Dong-Jin;Lee, Chung-Uk;Kim, Seung-Lee;Kim, Hyun-Woo;Hwang, Kyu-Ha;Park, Hong Soo
The Bulletin of The Korean Astronomical Society
/
v.43
no.1
/
pp.40.2-40.2
/
2018
외계행성 탐색시스템으로 관측한 영상은 한국천문연구원 본원에 있는 자료처리 시스템으로 실시간 전송된다. 이를 위해 한국과학기술정보연구원이 운영 중인 첨단망과 UDP 전송 프로그램을 활용하고 있으며 연간 약 140TB의 관측 영상을 칠레 55Mbps, 남아공 39Mbps, 호주 410Mbps의 속도로 전송하고 있다. 관측 영상이 전송되면 MEF 포맷으로 구조화 하고 bias, flat, crosstalk 보정과 bad pixel masking 등의 전처리 과정을 거쳐 각 연구과제별로 실시간 배포하고 있다. 중력렌즈 연구를 위한 우리 은하 중심부 관측영상은 차감영상 기법을 사용하여 약 3억 개의 별에 대해 측광하고 있으며, $18K{\times}18K$ 크기의 대용량 관측 영상을 빠르고 효율적으로 처리하기 위해 256개로 분할하여 분산처리하고 있다. 2014년부터 자료처리를 위한 시스템을 구축하고 증설하였으며 현재 11대의 서버(212Core)와 2.7PB의 NAS 스토리지를 운영하며 연간 700TB이상의 자료를 처리하고 있다. 우리은하 중심부 측광자료에서 검출된 변광 현상을 정리하여 측광데이터베이스를 구축하였다. 본 발표에서는 KMTNet 실시간 자료처리 과정에 대한 상세한 내용과 향후 자료처리 시스템 개선방향에 대해 소개한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.5
/
pp.97-102
/
2017
Recently deep learning techniques such as convolutional neural networks (CNN) have been introduced to classify high-resolution remote sensing data. In this paper, we investigated the possibility of applying CNN to crop classification of farmland images captured by drones. The farming area was divided into seven classes: rice field, sweet potato, red pepper, corn, sesame leaf, fruit tree, and vinyl greenhouse. We performed image pre-processing and normalization to apply CNN, and the accuracy of image classification was more than 98%. With the output of this study, it is expected that the transition from the existing image classification methods to the deep learning based image classification methods will be facilitated in a fast manner, and the possibility of success can be confirmed.
Proceedings of the Korea Contents Association Conference
/
2004.05a
/
pp.396-400
/
2004
In this study, we have proposed the tracking system of single moving object. The tracking system was estimated motion using differential image, and than track the moving object by controlled Pan/Tilt device of camera. Proposed tracking system is devided into image acquisition and preprocessing phase, motion estimation phase and object tracking phase. To estimation the motion, differential image method was used. In the binary differential image, decision of threshold value was used adaptive method. And in grouping the object area, block_based recursive labeling algorithm was used. As a result of experiment, motion of moving object can be estimated. The result of tracking, object was not lost and object was tracked correctly.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2005.11a
/
pp.67-69
/
2005
지문인식 시스템이란 저장되어서 가지고 있는 지문data와 지금 현재sensor로 입력받은 지문data의 유사도를 측정하는 system이다. 현 시대의 보안에 관한 요구가 많아지면서, 개인password나PIN(Personal Identification Number)같이 외워서 사용해야만 하는 불편함이 없고, 본인임을 쉽게 증명할 수 있는 생체정보를 이용한 ID system이 각광을 받고 있다. 이러한 상황 속에서 가장 손쉽게 접할 수 있는Finger-print Identification system을 구현할 것이다. 지문인식 시스템은 sensor의 방식에 따라 여러가지로 분류되는데, 본 논문에서는 광학방식 센서를 이용한 지문인식 시스템을 구현 하였다. 본 지문인식 시스템은 처음 지문영상을 센서로 입력 받고 그 입력된 영상을 전처리(pre-processing)해서 지문의 특징점을 추출한다. 이렇게 특징점들을 획득한 후, 후처리(post-processing)과정을 거쳐서 database에 저장 한다. 이렇게 지문영상의database를 구성한 후, 비교하고자 하는 지문영상을 센서로 입력 받아 지문영상을 획득할 때와 같은 processing과정을 거치고, 그 결과물과 database에 저장되어있는 지문과 1:N matching을 한다. 이렇게 해서 유사한 지문영상을 유사도에 따라 출력한다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.1
no.1
/
pp.10-16
/
2002
In this paper, a novel algorithm for segmentation of moving multiple vehicles in video sequences using logic operations is proposed. For the case of multiple vehicles in a scene, the proposed algorithm begins with a robust double-edge image derived from the difference between two successive frames using exclusive OR operation. After extracting only the edges of moving multiple vehicles using Laplacian filter, AND operation and dilation operation, the image is segmented into moving multiple vehicle image. The features of moving vehicles can be directly extracted from the segmented images. The proposed algorithm has no the two preprocessing steps, so it can reduce noises which are norm at in preprocessing of the original images. The algorithm is more simplified using logic operations. The proposed algorithm is evaluated on an outdoor video sequence with moving multiple vehicles in 90,000 frames of 30fps by a low-end video camera and produces promising results.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.744-744
/
2012
불투수층은 자연적인 침투를 허용하지 않는 인위적인 토지피복상태로 도시화율 추정 및 유역의 환경변화 정도를 분석하기 위한 척도로 사용되어 왔다. 특히, 수문학적 관점에서 불투수층은 단기 유출현상에 큰 영향을 끼치는 요소로 불투수율이 증가할수록 침투량이 감소하여 첨두유출량은 증가하고 도달시간은 짧아진다. 최근에는 급속한 도시화로 인해 불투수층의 영향이 더욱 커짐에 따라 불투수율의 추정에 대한 필요성이 증가하고 있다. 현재까지 위성영상을 이용한 불투수층의 추정은 고해상도 영상을 이용하여 피복분류를 수행하였다. 즉, 분류된 토지피복에 근거하여 불투수율을 산술적으로 계산하거나 분광혼합기법 및 회귀 트리기법 등 다양한 방법에 적용되어 왔다. 본 연구에서는 Sub-pixel 분류기법을 위성영상에 적용하여 섬강유역의 불투수율을 추정하고자 한다. Sub-pixel 분류는 기존 분류기법들이 다양한 토지피복이 혼합된 화소에 대해서도 가장 비중이 높은 토지피복 하나로 분류하던 것을 개선한 방법으로 fuzzy 이론을 적용하여 최소 20% 이상의 비율을 점유하는 항목 모두를 구분하여 분류하는 기법이다. 이를 위해 섬강유역의 Landsat TM 영상을 수집하고 환경부의 토지피복도와 지질도를 참조하여 트레이닝 자료를 수집하였다. 또한 결과에 영향을 미칠 수 있는 구름은 전처리를 통하여 제거하고 수집된 트레이닝 자료에 Sub-pixel 분류기법을 적용하여 섬강유역의 불투수율을 공간분포도로 작성하였다.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.414-418
/
2010
최근 라이프 로그의 수집과 관리에 관련된 연구가 많이 진행 중에 있다. 또 핸드폰 카메라, 디지털 카메라, 캠코더 등의 발전으로 자신의 일상생활을 비디오로 저장하고, 인터넷을 통해 공유하는 사람도 증가하고 있다. 비디오 데이터는 많은 정보를 포함하고 있는 라이프 로그의 한 예로. 동영상의 촬영 및 수집이 활발해짐에 따라 동영상의 메타정보를 생성하고, 이를 이용해 동영상 검색과 관리에 이용하려는 연구들이 진행 중이다. 본 논문에서는 라이프 로그를 수집하고 수집된 동영상과 라이프 로그를 이용하여 의미정보를 추출하는 시스템을 제안한다. 의미정보란 사용자의 행동을 나타내는 정보로써 컴퓨터 사용, 식사, 집안일, 이동, 외출, 독서, 휴식, 일, 기타로 9가지의 의미정보를 추출한다. 제안하는 방법은 사용자로부터 GPS, 가속도센서, 캠코더를 이용해 실제 데이터를 수집하고, 전처리 과정을 통하여 특징을 추출한다. 이때 추출될 특징은 위치정보와 사용자의 상태정보 그리고 영상처리릍 통한 RGB와 HSL 색공간의 요소와 MPEG-7의 EHD(Edge Histogram Descriptor). CLD(Color Layout Descriptor)이다. 추출된 특징으로부터 사람 행동과 같은 불안정한 상황에서 강점을 보이는 확률모델 네트워크인 베이지안 네트워크를 이용하여 의미정보를 추출한다. 제안하는 방법의 유용성을 보이기 위해 실제 데이터를 수집하고 추론하고 10-Fold Cross-validation을 이용하여 데이터를 검증한다.
To restore image degraded by motion blur and additive noise, it is very difficult. In conventional restoration method, regularization is usually applied to all over the image without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solve this problem we propose an adaptive restoration method using directional regularization operator considering edges and the regularization operator with no direction for flat regions. We verified that the proposed method showed better results in the resolution. As a result it showed visually better image and improved better ISNR further than the conventional methods.
Fundus images are highly useful in evaluating patients' retinal conditions in diagnosing eye diseases. In particular, vessel regions are essential in diagnosing diabetes and hypertension. In this paper, we used top-hat filter to compensate for non-uniform background. Image contrast was enhanced by using contrast limited adaptive histogram equalization (CLAHE) method. Hessian matrix was next applied to detect vessel regions. Results indicate that our method is 1.3% more accurate than matched filter method. Our proposed method is expected to contribute to diagnosing eye diseases.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.6
/
pp.1136-1140
/
2007
In this paper dose a laver surface check using a real time image process. This system does false retrieval of a laver at a laver production line. At first, a laver image was read in real time using a CCD camera. In this paper, we use an area scan CCD camera. Image is converted into a binary code image using a high-speed imaging process board afterwards. A laver feature is extracted by a binary code image. Surface false retrieval is finally executed using a laver feature. In this paper, we use an area feature of a laver image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.