• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.033 seconds

Image Preprocessing in Container Identifier Recognition System Using Multiple Threshold Regions (컨테이너 식별자 영상 인식 시스템에서 다중 임계영역을 이용한 영상 전처리)

  • Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.549-557
    • /
    • 2013
  • This paper proposes a method using the multiple threshold regions in the image preprocessing procedure for container identifier recognition system. The multiple threshold regions are set by considering the container image characteristics and used as the candidates for the final one, The image is transformed to black and white images using these threshold regions, then labeling, panelling and panels merging are executed for each candidate, respectively. Finally the best threshold region is selected through this procedure and the character region can be extracted. Applying the similar method the noises are removed and the characters of identifier are segmented from the extracted region. In the experiments with 162 different images the success rates for extracting of the character region and segmenting the characters are 99.04% and 98.09%, respectively.

Dynamic Threshold Value Decision in Image Binarization using Neural Network and Vi sion System (신경망과 비젼 시스템을 이용한 영상의 이진화에서 동적 임계값 설정)

  • 김영탁;문희근;김수정;김관형;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.313-316
    • /
    • 2002
  • 이동 물체의 이동 거리 추적이나 대상 물체의 인식과 판별 물체의 특징 추출과 같은 응용분야에서 컴퓨터(Computer)와 비젼시스템(vision system)을 이용한 영상 데이터 처리 분야에 대한 이용률이 증가하면서, 그에 따른 연구가 활발히 진행되고 있다. 따라서 CCD 카메라(Charge-Couple Device Camera)로부터 입력된 그레이 레벨(Gray Level)의 영상을 입력받아 처리과정을 거쳐 위치정보를 전송하는 과정에서 정확한 정보를 얻기 위한 전처리 과정 방법을 제안하고, 실제 시스템에 적용한 결과를 제시한다. 여기서 영상의 전처리 과정 중 입력 영상에서 불필요한 부분을 제거하거나, 배경과 대상물의 분리, 내포된 잡음을 없애기 위하여 흔히 이진화 방법을 많이 사용한다 특히 이진화 과정에서 그레이 레벨의 입력영상에서 히스토그램(histogram) 정보를 이용하여 영상의 이진화시의 임계값을 찾는 것은 아주 중요한 요인이다 따라서 본 논문에서는 신경회로망을 이용하여 실시간으로 CCD 카메라를 통하여 입력되는 그레이 레벨의 입력 영상에 대하여 동적으로 적당한 임계값을 .찾는 방법을 제안하고자한다. 또한 제안한 신경회로망을 이용한 임계값 추출 알고리즘(algorithms)을 구현한 시스템(system)에 적용하여 일반적인 방법과 비교 검토하고 응용 가능성을 확인한다.

Super-Resolution Reconstruction using adjusted input image (보정된 입력영상을 이용한 초해상도 영상복원)

  • Um, Jong-Bum;Yun, Jong-ho;Choi, Myung-Ryul
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.310-313
    • /
    • 2011
  • 초해상도 영상복원은 저해상도 영상을 이용하여 하나의 고해상도 영상을 획득하는 기법이다. 초해상도 영상복원은 크게 두 가지 방법으로 구현된다. 단일 영상을 이용한 초해상도 영상복원과, 여러 장의 저해상도 영상을 이용한 초해상도 영상복원 기법이 연구되고 있다. 여러 장의 저해상도 영상을 이용한 공간영역에서의 초해상도 영상복원 알고리즘은 크게 정합, 보간, 후처리 과정을 거치게 된다. 본 논문에서는 정합과정 이전에 입력영상보정을 통한 전처리과정을 수행하여 잡음으로 인한 부정확한 위치정보추정 확률을 감소시키고, 입력영상보정과정인 전처리과정으로 인해 후처리과정을 통한 영상복원 영상보다 향상된 영상을 획득하는 기법을 제안하며, 실험결과에서 기존의 방법보다 좋은 영상을 얻음을 확인하였다.

Face Region Segmentation using Watershed Algorithm And Object Grouping (Watershed Algorithm 과 Object Grouping 을 이용한 얼굴영역분할)

  • Hwang, Hoon;Choi, Young-Kwan;Choi, Chul;Lee, Jeong-A;Park, Chang-Choon
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • 얼굴영역을 분할하기 위해서 Watershed Algorithm 와 Object Grouping 을 이용한 얼굴영역 분할기법을 제안한다. 영상분할에 단점은 단일 알고리즘으로 영역분할이 어렵고, 또한 복잡한 영상에서 정확한 영역을 분할하기가 어렵다는 것이다. 그래서 본 논문에서는 Watershed Segmentation 기법과 Grouping 작업을 통한 병합, 그리고 색상의 선형회귀분석을 이용한 분석법을 적용하여 분할하고자 한다. 얼굴영역 분할방법을 전처리 과정과 영역 병합 그리고 얼굴 부분을 추출하는 3 단계의 과정으로 나누고, 전처리 과정에서는 수리형태학적(Mophological) 연산자를 이용한 영상 분할기법을 이용하여 분할한 후 얼굴 후보 영역을 검출, 영역병합과정에서 기존의 학습데이터와의 유사도를 측정, 얼굴객체추출 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다. 실험결과 제안한 방법을 통해 비교적 정확한 얼굴영역을 분할 할 수 있었다.

  • PDF

Recognizing Facial Expression Using 1-order Moment and Principal Component Analysis (1차 모멘트와 주요성분분석을 이용한 얼굴표정 인식)

  • Cho Yong-Hyun;Hong Seung-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.405-408
    • /
    • 2006
  • 본 논문에서는 영상의 1차 모멘트와 주요성분분석을 이용한 효율적인 얼굴표정 인식방법을 제안하였다. 여기서 1차 모멘트는 영상의 중심이동을 위한 전처리 과정으로 인식에 불필요한 배경의 배제와 계산시간의 감소로 인식성능을 개선하기 위함이다. 또한 주요성분분석은 얼굴표정의 특징인 고유영상을 추출하는 것으로, 이는 2차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 각각 320*243 픽셀의 48개(4명*6장*2그룹) 얼굴표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과 전처리를 수행하지 않는 기존 방법보다 우수한 인식성능이 있음을 확인하였다.

  • PDF

Recognizing Facial Expression Using Centroid Shift and Independent Component Analysis (중심이동과 독립성분분석에 의한 얼굴표정 인식)

  • Cho Yong-Hyun;Hong Seung-Jun;Park Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.401-404
    • /
    • 2006
  • 본 논문에서는 영상의 중심이동과 독립성분분석에 의한 효율적인 표정 인식방법을 제안하였다. 여기서 중심이동은 얼굴영상의 1차 모멘트에 의한 전처리 과정으로 불필요한 배경을 배제시켜 계산시간의 감소 및 인식률을 개선하기 위함이다. 또한 독립성분분석은 얼굴표정의 특징으로 기저영상을 추출하는 것으로 고차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 320*243 픽셀의 48개(4명*6장*2그룹) 표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과, 전처리를 수행치 않는 기존방법에 비해 우수한 인식성능이 있음을 확인하였다.

  • PDF

Time domain Filtering of Image for Lip-reading Enhancement (시간영역 이미지 필터링에 의한 립리딩 성능 향상)

  • Lee Jeeeun;Kim Jinyoung;Lee Joohun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.45-48
    • /
    • 2001
  • 립리딩은 잡음 환경 하에서 음성 인식 성능을 향상을 위해 영상정보를 이용한 바이모달(bimodal)음성인식으로 연구되었다[1][2]. 그 일환으로 이미 영상정보를 이용한 립리딩은 구현되었다. 그러나 현재까지의 시스템들은 환경의 변화에 강인하지 못하다. 본 논문에서는 이미지 기반 립리딩 방법을 적용하여 입술 영역을 보다 안정적으로 찾아 성능을 향상 시켰다. 그러나 이 방법은 많은 데이터량을 처리해야 하므로 전처리 과정이 필요하다. 전처리로 입력영상을 그레이 레벨로 변환하는 방법과, 입술을 반으로 접는 방법, 그리고 주성분 분석(PCA: Principal Component Analysis)을 사용하였다. 또한 인식성능 향상을 위해 음성에서 잡음 제거나 분석$\cdot$합성에 효과적인 성능을 보이는 RASTA(Relative Spectral)필터를 적용하여 시간 영역에서의 변화가 적은 성분이나 급변하는 성분, 그 밖의 잡음 등을 제거하였다. 그 결과 $72.7\%$의 높은 인식 성능을 보였다.

  • PDF

Implementation of an Efficient Interpolation for CMOS Image Sensor (CMOS 이미지 센서용 효과적인 인터폴레이션 구현)

  • Lee, Dong-Hun;Sonh, Seung-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.353-357
    • /
    • 2005
  • 본 논문에서는 영상 입력 장치 또는 카메라 이미지 센서로부터 얻은 Bayer Data입력 포맷을 우리가 디스플레이 장치로 보는 영상으로 출력하기 위해 전처리 작업을 수행한다. 먼저 들어오는 Bayer Data Format은 인터폴레이션을 수행하여 컬러영상을 표현하기위한 한 픽셀 표현 R, G, B값을 구한다. 본 논문에서는 연산량과 필요한 레지스터의 수를 줄이고 칩의 성능을 향상시키기 위해 기존 3${\times}$3라인 쓰지 않고 2${\times}$2라인을 이용한 인터폴레이션을 수행한다. 또한 Bayer Data입력에 대한 이미지 스케일링 작업과 인터폴레이션 수행 작업을 동시에 수행한다. 이를 구현하기위해 원본 이미지 사이즈를 640${\times}$480으로 입력 데이터를 사용하고, 소프트웨어로 전처리하여 이미지 결과를 확인한 후, 최적화된 알고리즘를 적용하여 VHDL설계언어를 이용한 하드웨어 설계후, ModelSim 6.0a를 이용하여 데이터를 검증한다.

  • PDF

Text Area Segmentation and Layout Vectorization of Off-line Handwritten Forms (손으로 설계한 서식 문서의 문자 영역 분리 및 서식 벡터화)

  • Kim, Byeong-Yong;Gwon, O-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3086-3097
    • /
    • 2000
  • 본 논문에서는 손으로 자유스럽게 그린 서식 문서에서 문자 영역을 분리하고, 이 중 선 성분을 벡터화하는 방법을 제안한다. 제안된 방법은 우선 이진화 및 세선화 과정에서의 데이터 손실을 방지하기 위해 스캔한 영상에 DRC 알고리즘을 적용한다. 그리고 영상의 기울어짐을 교정하기 위해 세선화된 영상에 허프 변환을 적용하여 기울어짐을 추정하고 교정한 다음, 서식의 구조를 이루는 선 성분을 추출해 낸다. 그리고 문자 영역은 연결 요소 분석법에 의해 문자 영역을 나타내는 데이터로 변환되며, 추출된 선 성분을 정렬, 합병 및 교정처리를 통해 벡터화 된다. 제안된 방법의 실효성을 입증하기 위해 각각 25명의 다른 사람이 필기구에 제한을 두지 않고 하나는 자를 사용하여 작성하고 다른 하나는 자를 사용하지 않고 작성한 서식에 대해 실험한 결과 전체 750개의 벡터 집합 중에서 전처리를 하지 않은 경우에는 666개, 전처리를 한 경우에는 746개의 서식 벡터 검출에 성공하여 그 유효성을 확인할 수 있었다.

  • PDF

A Study On Preprocessing of Fingerprint Image Using Multi-Scale Roof Edges (다척도 지붕에지 검출방법을 이용한 지문영상의 전처리에 대한 연구)

  • Kim Soo Gyeam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • A new roof edge detection method based on multi level scales of wavelet function is proposed in this paper roof edge and its direction are obtained in this new methods at one time. Besides. scale characteristics of detecting roof edge is analyzed. And a few new methods on fingerprint image pre-processing are described. A method segmenting foreground/background of fingerprint images is proposed, in which Prior estimation of direction field is not required any more. A segmentation method based on multi-scale roof edges is implemented. and the valid scale range of the method is defined. too. And the method is used to segment ridges and valleys in fingerprint images simultaneously The exact direction fields made up of the direction of each point in ridges can be obtained when detecting ridges exactly based on the roof edge detector, in comparison with the traditional coarse estimation of direction fields. Obviously. it will establish a solid foundation for the sequent fingerprint identification.