• 제목/요약/키워드: 영상특징

검색결과 5,055건 처리시간 0.033초

CT Scan Findings of Rabbit Brain Infection Model and Changes in Hounsfield Unit of Arterial Blood after Injecting Contrast Medium (토끼 뇌감염 모델의 CT 소견과 조영제 주입 후 동맥혈의 Hounsfield Unit의 변화)

  • Ha, Bon-Chul;Kwak, Byung-Kook;Jung, Ji-Sung
    • The Journal of the Korea Contents Association
    • /
    • 제12권9호
    • /
    • pp.270-279
    • /
    • 2012
  • This paper explores CT findings of a rabbit brain infection model injected with Escherichia coli and investigates the changes in Hounsfield unit (HU) of arterial blood over time. The brain infection model was produced by injecting E. coli $1{\times}10^7$ CFU/ml, 0.1 ml through the burr hole in the calvarium; 2~3 mm in depth from the dura mater, and contrast-enhanced CT, dynamic CT and arterial blood CT images were gained. It was found that various brain infections such as brain abscess, ventriculitis and meningitis. The CT image of brain abscess showed a typical pattern which the peripheral area was strongly contrast-enhanced while the center was weakly contrast-enhanced. The CT image of ventriculitis showed a strong contrast-enhancement along the lateral ventricle wall, and the CT image of meningitis showed a strong contrast-enhancement in the area between the telencephalon and the diencephalon. In dynamic CT images, the HU value of the infection core before injecting contrast medium was $31.01{\pm}3.55$. By 10 minutes after the injection, the value increased gradually to $40.36{\pm}3.76$. The HU value in the areas of the marginal rim where was hyper-enhanced showed $47.23{\pm}3.12$ before contrast injection, and it increased to $63.59{\pm}3.31$ about 45 seconds after the injection. In addition, the HU value of the normal brain tissue opposite to the E. coli. injected brain was $39.01{\pm}3.24$ before the injection, but after the contrast injection, the value increased to $49.01{\pm}4.29$ in about 30 seconds, and then it showed a gradual decline. In the arterial blood CT, the HU value before the contrast injection was $87.78{\pm}6.88$, and it increased dramatically between 10 to 30 seconds until it reached a maximum value of $749.13{\pm}98.48$. Then it fell sharply to $467.85{\pm}62.98$ between 30 seconds to 45 seconds and reached a plateau by 60 seconds. Later, the value showed a steady decrease and indicated $188.28{\pm}25.03$ at 20 minutes. Through this experiment, it was demonstrated that the brain infection model can be produced by injecting E. coli., and the characteristic of the infection model can be well observed with contrast-enhanced CT scan. The dynamic CT scan showed that the center of the infection was gradually contrast-enhanced, whereases the peripheral area was rapidly contrast-enhanced and then slowly decreased. As for arterial blood, it increased significantly between 10 seconds to 30 seconds after the contrast medium injection and decreased gradually after reaching a plateau.

Evaluation of Oil Spill Detection Models by Oil Spill Distribution Characteristics and CNN Architectures Using Sentinel-1 SAR data (Sentienl-1 SAR 영상을 활용한 유류 분포특성과 CNN 구조에 따른 유류오염 탐지모델 성능 평가)

  • Park, Soyeon;Ahn, Myoung-Hwan;Li, Chenglei;Kim, Junwoo;Jeon, Hyungyun;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • 제37권5_3호
    • /
    • pp.1475-1490
    • /
    • 2021
  • Detecting oil spill area using statistical characteristics of SAR images has limitations in that classification algorithm is complicated and is greatly affected by outliers. To overcome these limitations, studies using neural networks to classify oil spills are recently investigated. However, the studies to evaluate whether the performance of model shows a consistent detection performance for various oil spill cases were insufficient. Therefore, in this study, two CNNs (Convolutional Neural Networks) with basic structures(Simple CNN and U-net) were used to discover whether there is a difference in detection performance according to the structure of CNN and distribution characteristics of oil spill. As a result, through the method proposed in this study, the Simple CNN with contracting path only detected oil spill with an F1 score of 86.24% and U-net, which has both contracting and expansive path showed an F1 score of 91.44%. Both models successfully detected oil spills, but detection performance of the U-net was higher than Simple CNN. Additionally, in order to compare the accuracy of models according to various oil spill cases, the cases were classified into four different categories according to the spatial distribution characteristics of the oil spill (presence of land near the oil spill area) and the clarity of border between oil and seawater. The Simple CNN had F1 score values of 85.71%, 87.43%, 86.50%, and 85.86% for each category, showing the maximum difference of 1.71%. In the case of U-net, the values for each category were 89.77%, 92.27%, 92.59%, and 92.66%, with the maximum difference of 2.90%. Such results indicate that neither model showed significant differences in detection performance by the characteristics of oil spill distribution. However, the difference in detection tendency was caused by the difference in the model structure and the oil spill distribution characteristics. In all four oil spill categories, the Simple CNN showed a tendency to overestimate the oil spill area and the U-net showed a tendency to underestimate it. These tendencies were emphasized when the border between oil and seawater was unclear.

Effects of Gadolinium Contrast agent on Bone Mineral Density Measurement using Dual Energy X-ray Absorptiometry (가돌리늄조영제가 이중에너지 X-선 흡수법을 이용한 골밀도검사에 미치는 영향)

  • Lee, Keun-Ohk;Lee, Min-Su
    • Journal of the Korean Society of Radiology
    • /
    • 제15권1호
    • /
    • pp.63-70
    • /
    • 2021
  • Radiographic contrast agents are used for diagnostic purposes and are one of the factors affecting measured values in bone density tests. They are absorbed into tissues and have an effect of increasing the measured values of bone density, so they are avoided as much as possible before performing a bone density test. MRI contrast agents, which have different physical properties and mechanisms of action than radiographic contrast agents, are based on gadolinium, a metal element. They have radiopacity characteristics, so MRI are generally performed prior to examination using radiation. The purpose of this study was to investigate the effects of MRI contrast agents on bone mineral density examination using dual energy X-ray absorption. Two types of gadolinium based MRI contrast agents were injected into an acrylic water tank for each volume, and the humanoid spine phantom was inserted and the BMD and T-score from (L1-L4) were analyzed by scanning a total of 30 times, 5 times for each injection type. The average value of the measured total (L1-L4) bone density for each of the two contrast agents was 0.952±0.052, 0.957±0.050, and 0.956±0.05g/㎠, respectively, for the Gadoterate Meglumine component 0mL, 7.5mL and 15mL, when the gadobutrol components were 0mL, 5mL, and 10mL, there was no statistically significant difference at all sites at 0.953±0.001, 0.954±0.001, and 0.945±0.001g/㎠, respectively(p>0.05). The average value of total T-score was -0.46±0.05, -0.4±0, -0.42±0.04 when the Gadoterate Meglumine component was 0mL, 7.5mL and 15mL, respectively. When the Gadobutrol ingredients were 0mL, 5mL and 10mL, there was no statistically significant difference in all areas, with -0.46±0.05, -0.46±0.05, and 0.5±0.00, respectively. In this experiment, the MRI contrast agent was found to have no effect on bone density tests, using the dual-energy X-ray absorption method. There is a limitation in that physical conditions such as kidney and health conditions etc. were not taken into consideration, so further clinical research is expected to be conducted in the future.

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제11권1호
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

A Study on Daytime Transparent Cloud Detection through Machine Learning: Using GK-2A/AMI (기계학습을 통한 주간 반투명 구름탐지 연구: GK-2A/AMI를 이용하여)

  • Byeon, Yugyeong;Jin, Donghyun;Seong, Noh-hun;Woo, Jongho;Jeon, Uujin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • 제38권6_1호
    • /
    • pp.1181-1189
    • /
    • 2022
  • Clouds are composed of tiny water droplets, ice crystals, or mixtures suspended in the atmosphere and cover about two-thirds of the Earth's surface. Cloud detection in satellite images is a very difficult task to separate clouds and non-cloud areas because of similar reflectance characteristics to some other ground objects or the ground surface. In contrast to thick clouds, which have distinct characteristics, thin transparent clouds have weak contrast between clouds and background in satellite images and appear mixed with the ground surface. In order to overcome the limitations of transparent clouds in cloud detection, this study conducted cloud detection focusing on transparent clouds using machine learning techniques (Random Forest [RF], Convolutional Neural Networks [CNN]). As reference data, Cloud Mask and Cirrus Mask were used in MOD35 data provided by MOderate Resolution Imaging Spectroradiometer (MODIS), and the pixel ratio of training data was configured to be about 1:1:1 for clouds, transparent clouds, and clear sky for model training considering transparent cloud pixels. As a result of the qualitative comparison of the study, bothRF and CNN successfully detected various types of clouds, including transparent clouds, and in the case of RF+CNN, which mixed the results of the RF model and the CNN model, the cloud detection was well performed, and was confirmed that the limitations of the model were improved. As a quantitative result of the study, the overall accuracy (OA) value of RF was 92%, CNN showed 94.11%, and RF+CNN showed 94.29% accuracy.

Musculoskeletal Injuries by Weapons in Korean Soldiers: Four-Year Follow-Up (총기 및 폭발물에 의한 군인의 근골격계 손상: 최근 4년간 분석)

  • Yang, Hanbual;Hwang, Il-Ung;Song, Daeguen;Moon, Gi Ho;Lee, Na Rae;Kim, Kyoung-Nam
    • Journal of the Korean Orthopaedic Association
    • /
    • 제56권3호
    • /
    • pp.234-244
    • /
    • 2021
  • Purpose: To date, studies of firearm and explosive injuries in the Korean military have been limited compared to its importance. To overcome this, this study examined the characteristics of musculoskeletal damages in soldiers who have suffered firearm and explosive injuries over the past four years. Materials and Methods: From January 2015 to July 2019, military forces who had suffered musculoskeletal injuries from firearms or explosive substances were included. The medical records and radiographs were reviewed retrospectively, and telephone surveys about Short Musculoskeletal Functional Assessment (SMFA) for this group were conducted. To compare the functional outcomes, statistical analysis was performed using a t-test for the types of weapons, and ANOVA for others. Results: Of the 61 patients treated for firearms and explosives injuries, 30 patients (49.2%) were included after undergoing orthopedic treatment due to musculoskeletal injury. The average age at injury was 26.4 years old (21-52 years old). The number of officers and soldiers was similar. Eleven were injured by gunshot and 19 by an explosive device. Sixteen were treated in the Armed Forces Capital Hospital and 10 at private hospitals. More than half of the 16 patients (53.3%) with a fracture had multiple fractures. The most common injury site was the hand (33.3%), followed by the lower leg (30.0%). There were 14 patients (46.7%) with Gustilo-Anderson classification 3B or higher who required a soft tissue reconstruction. Fifteen patients agreed to join the SMFA survey for the functional outcomes. Between officers and soldiers, officers had better scores in the Bother Index compared to soldiers (p=0.0045). Patients treated in the Armed Forces Capital Hospital had better scores in both the Dysfunction and Bother Index compared to private hospitals (p=0.0008, p=0.0149). Conclusion: This is the first study to analyze of weapons injuries in the Korean military. As a result of the study, the orthopedic burden was high in the treating patients with military weapon injuries. In addition, it is necessary to build a military trauma registry, including firearm and explosive injuries, for trauma treatment evaluation and development of military trauma system.

A Study on Effective Information Delivery of Digital Sign Systems in General Hospitals (종합병원 디지털 정보안내사인의 효과적 정보전달을 위한 연구)

  • Kim, Hwa Sil;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • 제19권
    • /
    • pp.281-292
    • /
    • 2015
  • For this study, I conducted a survey investigating current situation, user preference, and field experiment. Hospitals utilizing digital sign systems at least five years were selected, which are connected with visual elements (layout, typo, color) used in waiting areas and elements of the systems (time, video time line). The results obtained from the field survey showed that digital sign systems used the color of typo and background contrasted to one another to increase explicitness and to ensure easy understanding of contents. In addition, the Gothic typo with relatively high legibility was adopted. Time and video timeline, which characterize digital sign systems, showed the advertising screens of the hospitals and the guidance of medical treatment at regular intervals. Moreover, survey results on user satisfaction showed that a majority of respondents indicated they had difficulty in understanding digital information conveyed from digital sign systems due to time setting for rotational speed or the small size of typo although most of the users had previous experience with digital sign systems. The highest proportion of respondents (n=86, 86%) answered that information related to medical departments was what they sought most frequently and that this kind of information should be importantly considered in digital sign systems. For the experiment, new samples with restructured contents of current digital sign systems were created and tested while keeping its design unchanged as well as applying these new samples. Study participants were in their 20s through 50s. When the size of typo was larger under the same conditions for all age groups, study participants found the desired information approximately 3.5 seconds faster. In addition, those in their 20-30s and 40-50s showed the time difference of 4.7 seconds for small typo and 6 seconds for large typo, which suggested that there was a difference by age in the amount of time taken in the experiment to find the desired information from the rotating digital sign system regardless of age and the size of typo.

The Relationship between Social Relations and Physical Activity in the Young-old and Old-old Elderly (전·후기 노인들의 사회적 관계와 신체활동 실천과의 관련성)

  • So Youn Jeon;Sok Goo Lee
    • Journal of agricultural medicine and community health
    • /
    • 제48권2호
    • /
    • pp.103-117
    • /
    • 2023
  • Objectives: This study aims to reveal the relationship between social relations and physical activity in the young-old and old-old elderly. Methods: Data from 2020 National survey of Older Koreans were used, and a total of 10,097 subjects over the age of 65 were included in analysis. The dependent variable was physical activity, and the independent variables were social relations barrier and motivational factors. x2-test and binary logistic regression were performed for data analysis. Results: The physical activity rate in the elderly were 40.8% in the young-old and 29.2% in the old-old. The socio-demographic characteristics affecting physical activity were the young-old elderly were sex, residential area, employment status and household income, and the old-old elderly were sex, age, residential area, education level and household income. The social relations barrier factors affecting physical activity were the young-old elderly were number of close friends, family care, exercise information search and video viewing, and the old-old elderly were household type, number of close friends, participation in exercise education, exercise information search and video viewing. The social relations motivational factors affecting physical activity were the young-old elderly were call with children/relative/friend, participation in sports activity, access time from home to parks, and the old-old elderly were call with children/relative/friend, participation in sports activity, satisfaction with green spaces. Conclusions: It was found that social relations barrier and motivational factors of the elderly are important factors to consider when developing physical activity promotion strategy, and there are also difference between the age of the elderly.

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • 제56권5호
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • 제39권6_1호
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.