Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.07a
/
pp.67-69
/
2010
대부분의 디지털 카메라는 컬러 필터 배열(Color Filter Array)을 가진 하나의 영상 획득 센서를 사용한다. 따라서 영상획득 이후에 컬러 보간 알고리즘이 필수적으로 진행된다. 또 영상 획득 과정에서 센서의 열화나 암전류 등과 같은 잡음이 발생하여 영상 잡음 제거 알고리즘이 필요하다. 하지만 기존의 대부분의 영상 잡음 제거 알고리즘은 컬러 필터 배열 영상의 특징인 모자이크 데이터 기반이 아닌 컬러 보간 이후의 풀 컬러영상에(YCbCr) 적용되고 있다. 따라서 잡음이 포함된 영상으로 컬러 보간을 할 경우 잡음의 공간적 상관관계(spatial correlation)가 커짐에 의한 잡음 번짐 때문에 컬러 보간 이후의 잡음제거는 더욱 어렵게 된다. 이와 같은 문제를 해결하기 위해 컬러 필터 배열 영상에 대한 잡음제거 알고리즘이 연구되고 있으며, 본 논문에서도 CMOS/CCD의 이미지 센서에서 획득된 베이어 컬러 필터 배열 영상에서 잡음을 제거하는 알고리즘을 제안한다. 이를 위해서 베이어 컬러 필터 배열 영상 데이터에서 경계(edge)의 방향성을 고려한 LMMSE 방법을 기반으로 한 잡음제거 알고리즘을 제안한다. 제안하는 알고리즘은 영상의 경계를 보존해주며 잡음제거 과정 다음에 진행되는 컬러 보간 과정에서의 잡음 번짐의 문제를 해결할 수 있다. 실험 결과를 통해 향상된 잡음 제거 효과를 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.511-513
/
2002
본 논문에서는 영상에 Salt-Pepper와 같은 임펄스 잡음이 존재하는 영상에 대한 잡음 제거는 기존의 잡음제거 방법인 미디언 필터를 이용하여 잡음을 제거할 수 있지만 임펄스 잡음이 아닌 비임펄스 잡음이 포함된 영상에 대해서는 미디언 필터를 이용하여 비임펄스 잡음이 제거되지 않으므로 임펄스 잡음이 아닌 비임펄스 잡음이 존재하는 영상에 대한 잡음 제거를 형태학적 연산을 이용하여 잡음 제거하는 방법을 제안한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.429-434
/
1997
영상 평활화(Image Smoothing) 작업은 영상 신호 표본화, 정량화, 통신 이동과 같은 과정을 거치면서 잡음 등의 불필요한 신호가 포함된 디지털 영상의 잡음을 감소키는데 많이 이용되고 있다. 이와 같은 영상 평활화 작업에는 대부분 전역적인 공간 영역 혹은 주파수 영역의 전역적인 필터링 기법이 이용되고 있다. 그러나, 기존의 방법들은 왜곡된 잡음 픽셀들의 정보를 그대로 반영하기 때문에 잡음 제거 결과 복원 영상의 선명도는 크게 저해된다. 본 논문에서는 특히나 양자화 과정을 통해 잡음 정보의 변형이 극대화되어지는 압축 영상을 대상으로 하여 적절한 잡음제거 기법을 제안하고자 한다. 특히, 압축 영상의 잡음 추출은 1차 복호화 후의 공간 도메인에서, 추출된 잡음 제거는 주파수 도메인에서 수행함으로써 2차 복호화 후의 잡음제거 결과 영상은 압축 영상의 잡음 제거에 따른 본질적인 문제를 해결하였으며, 실험 결과 역시 다른 기존의 방법에 비해 우수한 성능을 발휘하였다.
Communications for Statistical Applications and Methods
/
v.19
no.2
/
pp.225-235
/
2012
Noise reduction is an important issue in the field of image processing because image noise worsens the quality of the input image. The basic difficulty is that the noise and the signal are not easy to distinguish. Simple moothing is one of the most basic and important procedures to remove the noise, however, it does not consider the level of noise. This method effectively reduces the noise but the feature area is simultaneously blurred. This paper considers the block approach to detect noise and image features of the input image so that noise reduction could be adaptively applied. Simulation results show that the proposed algorithm improves the overall quality of the image by removing the noise according to the noise level.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.213-216
/
2019
영상 잡음 제거 알고리즘은 잡음으로 오염된 영상으로부터 잡음이 제거된 깨끗한 영상을 추정하여 복원하는 연구이다. 기존의 모델 기반 방법의 영상 잡음 제거 알고리즘은 영상을 복원하는 과정에서 최적화 문제를 풀어야 한다는 단점과 매개변수를 직접 선택을 해주어야 한다는 단점을 가진다. 본 논문에서는 딥러닝을 이용한 학습기반 방법의 영상 잡음 제거 연구를 소개한다. 먼저, 신경망의 구축을 위하여 신경망의 구성 요소는 Instance Normalization 과 컨볼루션 신경망을 이용한 모델을 제안하였고, 여러 연구 분야에서 좋은 성능을 보이는 U-Net 구조를 전체적인 구조로 차용하였다. 신경망의 학습을 위하여 DnCNN 에서 제안한 잡음을 학습하는 잔여 학습 기법을 채택하였고, 기존의 영상 잡음 제거 알고리즘의 단점인 결과 영상이 흐릿해지는 현상을 보완하기 위하여 생성적 적대 신경망 학습 방법을 적용하였다. 본 논문에서 제안한 신경망을 이용한 잡음 제거 영상의 결과가 기존의 연구 방법들 보다 인지적인 측면에서 좋은 결과를 보임을 확인하였다.
Yang, Haeyoon;Jang, Yeong Il;Soh, Jae Woong;Cho, Nam Ik
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.297-300
/
2021
영상 잡음 제거는 잡음으로 저하된 영상으로부터 잡음 없는 영상을 복원하는 기술이다. 최근 영상 처리에 딥러닝을 사용한 학습 기반 방법 중 저수준 컴퓨터 비전 분야에 고수준 영상 정보를 활용하는 접근이 있었다. 본 논문에서는 고수준 영상 정보인 영상 분할 지도를 활용하여 영상 속 가산 백색 잡음 제거 연구를 진행하였다. 잔차 연결을 활용한 구조의 인공신경망 모델에 잡음 영상, 잡음 수준 지도, 영상 분할 지도를 입력으로 넣어 고수준 영상 정보를 활용할 수 있게 하였다. 본 논문에서 제안한 인공신경망을 Outdoor Scene Dataset과 CBSD68 Dataset에 대해 확인해본 결과, PSNR과 인지적인 측면에서 DnCNN과 FFDNet보다 성능이 향상되는 것을 확인하였다.
영상에 포함된 잡음은 시각적인 문제를 일으킬 뿐만 아니라, MPEG이나 H.263과 같은 영상 압축 시스템의 부호화 효율을 떨어뜨린다. 따라서 영상 압축 시스템의 입력으로 이러한 잡음이 포함된 신호가 들어갈 때, 잡음 제거 필터를 사용하여 잡음을 제거한 후 영상 압축을 하는 것이 시각적인 면에서나 압축 효율적인 면에서 매우 효과적이다. 본 논문에서는 이웃한 4개의 화소값을 참조하여 잡음의 존재 여부를 판단하고, 판단 결과를 이용하여 선택적으로 잡음을 제거하는 적응형 십자형 중간값(median) 필터를 제안한다. 제안된 방법을 이용하면 전체 영상에 걸쳐 필터를 이용하는 방법에 비해 계산량이 크게 줄고, 영상의 필터 처리후에 나타나는 뭉개짐(blurring) 현상을 줄일 수 있다. 또한 잡음이 처리된 영상을 시간방향으로 Look-up Table에 따른 IIR필터를 통과시킴으로써 시간상으로 존재하는 잡음을 제거하여 동영상의 주관적 화질을 향상시킬 수 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.6
/
pp.909-914
/
2002
In this thesis, noise reduction of image with impulse noise in circle image removed noise to harness existing median filter for noise reduction from image data of damage by noise when impulse noise is high or noise reduction is low, but it is not made up of noise reduction to harness existing median filter in case of existence of non-impulse noise. Therefore noise reduction of image with non-impulse noise had to remove noise by morphological arithmetic in this thesis's proposition. In contrast to median filtering, result of edge detection is more efficient after remove non-impulse noise by method of thesis's proposition and it compare and demonstrate through this experimentation.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.217-219
/
2019
In response to the increased use of digital video device, more researches are actively made on the image processing technologies. Image processing is practically used on various applied fields such as medical photographic interpretation, and object recognition. The types of image noise include Gaussian Noise, Impulse Noise, and Salt and Pepper. Noise refers to the unnecessary information which damages the video and the noise is mainly removed by a filter. Typical noise removal methods are Median Filter and Average Filter. While Median Filter is effective for removing Salt and Pepper noise, the noise removal performance is relatively lower in the environment with high noise density. To address such issue, this study suggested an algorithm which utilizes neighboring pixels to remove noise.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.373-376
/
2009
영상처리 기술은 인간의 시각에 기반을 둔 영상정보와 관련된 분야에서 중요한 기반 기술로써 현재 여러 분야에서 연구가 활발하게 진행 중이다. 여러 응용 분야에서 사용되는 영상처리의 세부 기술범위는 영상 변환, 영상 개선, 영상 복원, 영상 압축등과 같이 다양하며, 이런 영상처리 기술의 중요한 연구 목표 중의 하나는 정확한 정보 추출을 위한 영상정보의 개선에 있다. 영상정보의 개선은 영상의 해석과 인식을 위한 기본적인 과제이며, 영상에서 나타날 수 있는 잡음을 제거하는 영상처리 기술이 영상정보 개선의 한 분야라고 할 수 있다. 영상정보 개선을 위한 기존의 필터링 알고리즘은 잡음제거율이 높은 만큼 경계선의 보존이 어렵다는 단점이 있으며, 이를 보완하기 위해 다른 영상처리 알고리즘을 함께 응용하여 처리함으로써 처리시간이 증가되고 원 영상의 중요한 정보를 훼손할 가능성이 존재한다. 따라서 본 논문에서는 기존의 필터링 알고리즘의 문제점을 개선하는 동시에 잡음 제거율을 높일 수 있는 Fuzzy Mask Filter 알고리즘을 제안한다. Fuzzy Mask Filter 알고리즘은 마스크에서 얻은 정보를 Fuzzy Logic에 적용하여 임계값을 구하며, 구해진 임계값을 기준으로 출력영상의 화소값을 결정하는 알고리즘이다. 본 논문에서 제안한 알고리즘의 효율성을 검증하기 위해 Impulse 잡음과 Salt pepper 잡음을 임의로 생성하여 기존의 알고리즘과 비교한 결과, 제안된 방법이 잡음 영상에 존재하는 픽셀 정보를 훼손하지 않고 잡음을 효과적으로 제거한 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.