• 제목/요약/키워드: 영상분리

검색결과 1,303건 처리시간 0.033초

차영상을 이용한 머리와 얼굴영역의 분리 방법 (Splitting Method for Head and Face Region using Differential Image)

  • 전영철;김성락
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.73-75
    • /
    • 2007
  • 이 논문은 얼굴인식에 있어서 중요한 얼굴 영역과 머리 영역을 차영상을 이용하여 분리하는 방법을 제안한다. 먼저 입력영상에 대한 CMYK 영상 중 K 영상을 가지고 머리 영역을 분리한 후에 YIQ 영상의 Y영상과 머리 영상과의 차영상을 이용하여 얼굴영역을 분리한다. 분리한 머리영역과 얼굴영역에 대하여 라벨링을 하여 각 영역을 얻는다. 제안한 방법은 머리와 얼굴 영역을 뚜렷하게 분리하여 특징 점 추출 시 매우 유용할 것이다.

위성영상의 종류에 따른 분리도 특성의 상관관계 분석 (Analysis of Relation of Class Separability According to Different Kind of Satellite Images)

  • 홍순헌
    • 한국콘텐츠학회논문지
    • /
    • 제7권1호
    • /
    • pp.215-224
    • /
    • 2007
  • 위성영상의 분류는 원격탐사의 가장 기본적인 분야이다. 위성영상분리도 위성영상의 분류에 있어 영상 정확도 향상에 매우 효율적이라 할 수 있다. 영상분류를 향상시키기 위해서 분리도의 특성을 파악하여 분류의 정확도와의 상관관계를 분석하였다. 영상은 영상마다의 분리도를 비교, 분석하기 위해 IKONOS 영상, SPOT 5 영상, Landsat IM 영상을 1m의 해상도로 리샘플링하였다. 본 연구에서 위성영상별로 클래스 분리도를 측정한 결과 분리도 값이 대체로 $1,600{\sim}2,000$으로 높게 나타났다.

고정점 및 견실 알고리즘의 조합형 ICA에 의한 혼합영상 분리 (Separation of Mixed Images Using Hybrid ICA of Fixed_point and Robust Algorithm)

  • 조용현;오정은;김아람
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (중)
    • /
    • pp.623-626
    • /
    • 2003
  • 본 연구에서는 고정점 알고리즘의 독립성분분석과 원신호의 시간적 상관성을 고려한 견실 알고리즘의 독립성분분석을 혼합한 조합형 독립성분분석에 의한 혼합영상의 분리를 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법의 경신규칙을 이용함으로써 빠른 분리속도와 우수한 분리성능을 가지며, 견실 알고리즘은 2차적 통계성의 일괄처리 알고리즘으로 시간적 상관성 및 낮은 kurtosis를 가진 영상분리에 효과적이다. 이들 기법들을 $512{\times}512$ 픽셀의 4개 영상으로부터 임의의 혼합행렬에 따라 발생되는 흔합영상의 분리에 적용한 결과, 우수한 분리성능과 빠른 분리속도가 있음을 확인하였다.

  • PDF

형태 정보 기반 확장 방법을 이용한 영역 분리 알고리즘에 관한 연구 (The Region Segmentation using Shape-based Expanding)

  • 안용학;김학춘
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2002년도 춘계학술대회 논문집
    • /
    • pp.316-322
    • /
    • 2002
  • 본 연구에서는 고정된 카메라로부터 입력되는 영상열에서 이동 물체를 신뢰성있게 분리하기 위해 형태 정보를 이용한 확장 방법을 제안한다. 영역 분리의 핵심은 배경으로부터 주위 잡음 영역과 무관하게 이동 물체 영역을 분리하는 기술이라고 볼 수 있다. 제안된 방법은 초기 이동 물체가 존재하지 않는 영상을 참고 영상(reference image)으로 하여 입력 영상(input image)과의 차영상(subtraction image)을 구하고, 차영상의 히스토그램(histogram)에서 배경잡음 모델링(modeling)을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 국부 최대값들(local maxima)을 이용해 후보 초기 영역을 선정한 후, 이 영역을 기반으로 영역의 형태정보를 이용하여 영역을 선별적으로 확장하면서 결합하는 방법을 사용하였다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역 분리 방법보다 주위 잡음과 무관하게 이동 물체를 분리할 수 있음을 확인할 수 있었다.

  • PDF

독립성분 분석과 E-M을 이용한 혼합영상의 분리 기법 (An Image Separation Scheme using Independent Component Analysis and Expectation-Maximization)

  • 오범진;김성수;유정웅
    • 한국정보과학회논문지:정보통신
    • /
    • 제30권1호
    • /
    • pp.24-29
    • /
    • 2003
  • 이 논문에서는, 독립성분해석기법과 EM기법을 이용한 새로운 혼합영상분리 방법을 제안한다. 독립성분해석기법은 통계적으로 독립된 랜덤변수들의 선형조합으로 측정대상 랜덤신호를 표기하는 여러 통계신호처리 기법 중의 하나로, 정보의 분리, 특징 추출 통의 응용분야에 적용되고 있다. 기술적으로는, 독립성분기법은 주성분 분리기법의 확장이라 볼 수 있고, 근래에 혼합정보의 분리에 관련하여 많이 연구되고 있다. 현재까지의 연구 결과로는 혼합영상의 분리에 있어 독립성분해석기법만으로는 혼합영상분리의 해를 얻지 못하고 있다. 이러한 독립성분해석기법의 약점을 보완하는 방범으로, 최근에 이노베이션 프로세서를 전처리로 하는 독립성분해석기법을 혼합한 시스템을 이용한 혼합영상 분리가 시도되었다. 이노베이션 프로세서를 전처리로 첨가한 혼합영상분리의 과정도 독립성분해석기법만을 사용한 경우보다는 향상된 혼합영상분리를 하지만, 분류된 영상들이 원래의 혼합 전의 영상과 많이 다른 결과를 내고 있다. 기존의 방법들인 독립성분해석기법이나 이노베이션이 전처리로 적용된 경우에도 혼합이전의 영상간의 상관관계가 클 경우, 혼합영상의 분류가 잔 이루어지지 않는다. 본 논문에서는 이 약점을 보완하기 위하여. EM이론을 기존의 시스템에 전처리로 첨가하여 혼합 영상의 분리를 향상시키고자 하였다. 실험 결과에서는 최근에 연구된 이노베이션의 방법보다 EM을 적용시킨 경우가 향상된 혼합영상의 분리의 결과를 보여 주고 있다.

이동물체 분리를 위한 Seed 선정 및 영역 확장 알고리즘에 관한 연구 (A Study on Seed Selection and Region Growing Algorithm for Moving Object Segmentation)

  • 경태원;강승훈;채옥삼
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.981-984
    • /
    • 2001
  • 본 논문은 이동물체 영역을 신뢰성 있게 분리하는데 기초가 되는 seed를 정확하게 선정하고, 선정된 seed를 중심으로 영역을 확장함으로써 이동물체 영역을 분리하기 위한 방법을 제안한다. 고정된 카메라로부터 입력되는 연속된 영상열로부터 초기의 이동물체가 존재하지 않는 영상을 참고영상으로 하여 입력영상과의 차영상을 구하고 차영상의 히스토그램에서 배경잡음 모델링을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 Local Maxima 들을 이용해 후보 seed를 선정한 후, 이드의 특징값들을 분석하여 이동물체의 seed와 배경의 seed 를 결정하고 이 두 개의 seed를 기반으로 watershed 알고리즘을 적용하여 영역을 확장함으로써 이동물체 영역을 추출한다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역분리 알고리즘보다 주위 잡음의 영향을 적게 받으며 효과적으로 이동물체를 분리할 수 있음을 확인할 수 있었다.

  • PDF

MR Brain 영상에서의 뇌 영역 분할 (Brain Region Segmentation on MR Brain Image)

  • 김령주;이병일;최흥국;이동수
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.95-98
    • /
    • 2001
  • 본 논문은 뇌의 축방향(axial sect ion)에 대하여 촬영한 뇌의 자기공명 영상(Magnetic Resonance Imaging)을 대상으로 뇌의 영역만을 분리하기 위한 방법을 제안하고 있다. MR영상은 슬라이스마다 다른 분포값을 가지기 때문에 각 슬라이스 별로 조직의 특성을 파악하여 뇌의 영역을 분리하였다. 히스토그램의 명암값 분포를 분석하여 배경과 뇌를 둘러싸고 있는 외피를 제거하고 라벨링(label1ing) 알고리즘을 적용하여 뇌만 분리 할 수 있도록 하는 마스크 영상을 만들어 이것을 이용하여 원영상으로부터 뇌의 영역만을 분리하였다.

  • PDF

계층적인 접근과 개선된 RBF 네트워크를 이용한 영문 명함 인식 (Recognition of English Calling Card by Using Hierarchical Approach and Enhanced RBF Networks)

  • 임은경;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.141-146
    • /
    • 2003
  • 본 논문에서는 문자열 영역 추출을 위한 3배 축소 명함 영상, 개별 문자 추출을 위한 2배 축소 명함 영상, 정확한 인식을 위한 원본 영상으로 명함 영상을 분리하고, 분리된 영상들을 대상으로 각 영상 크기에 적합한 처리를 수행하고 각각의 결과들을 이용하여 정확한 문자를 추출할 수 있는 방법을 제안한다 그리고 추출된 개별 문자들의 인식을 위해서 ART1을 적용한 개선된 RBF 네트워크를 제안하여 적용한다 제안된 명함 추출 방법은 원 영상을 각각의 처리 방법에 적합하도록 하기 위해서 다해상도로 분리한다. 문자열의 추출은 문자들의 간격을 축소 시켜서 블록을 추출하기 쉬운 적절한 최소 크기의 영상에서 수행하고, 개별 문자의 추출은 문자들의 간격을 분리할 수 있는 적절한 영상의 크기에서 수행한다 개별 문자 인식은 문자의 형태학적 특성을 잘 나타내기 위해서 원본 영상에 적용한다 본 논문에서 제안한 추출 방법은 문자를 정확히 추출할 수 있으며 병렬 처리가 가능하여 처리시간을 단축할 수 있는 장점을 가진다. 그리고 정확히 추출된 개별 문자들을 개선된 R8F 네트워크를 이용하여 인식률을 향상시킨다. 제안된 명함 추출 및 인식 방법의 성능을 확인하기 위해서 실제 영문 명함 영상을 대상으로 실험한 결과, 기존의 방법보다 명함 추출 및 인식에서 우수한 성능이 있음을 확인하였다.

  • PDF

배경 영상을 이용한 교차로 영상에서 독립 차량 분리 기법 (Isolated Vehicle Segmentation using Background Image in Intersection Traffic Scene)

  • 이대호;박세제;박영태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.376-378
    • /
    • 2001
  • 영상 정보에 기반한 지능형 교통 정보 시스템(ITS)의 응용 분야에서, 차량의 그림자 제거와 겹침 차량을 분리하기 위하여 3차원 물체의 특징을 이용하며 차량 형상을 분리하는 기법을 제안한다. 제안하는 기법은 차량을 분리하기 위하여 연속 프레임에서 배경을 수정하고, 배경 영상과 현재 입력 영상의 차이를 이용한다. 또한 그림자를 제거하고 겹침 차량을 분리하기 위하여, 1) 3차원 증거를 차량 증거 영역에서 검출하여 군집화하고, 2) 독립 차량의 중심 위치를 판단하고, 3) 다시 임계치에 의해 차량의 형상을 분리한다. 단순 임계치에 의해 차량을 분리하는 기법은 기상조건 등에 민감하기 때문에 여러 조건에 따라 다른 알고리즘을 적용해야 하지만 제안하는 기법은 동일한 알고리즘으로 여러 기상조건에 적응이 가능하다.

  • PDF

Full-HD급 축구 동영상의 배경 분리에서 영상 다운 샘플링이 배경 분리 성능에 미치는 영향에 관한 연구 (Impact of Image Downsampling on the Performance of Background Subtraction in Full-HD Soccer Videos)

  • 정찬호
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.46-49
    • /
    • 2017
  • 본 논문에서는 "Full-HD급($1920{\times}1080$) 축구 동영상" 분석을 위해 필수적인 "배경 분리"에서 "영상 다운 샘플링"이 배경 분리 성능에 미치는 영향에 대해 정량적으로 분석 및 고찰한다. 이를 위해 본 논문에서는 배경 분리 정확도 뿐만 아니라 배경 분리 속도 관점에서 영상 다운 샘플링이 미치는 영향을 평가하였다. 또한 실험의 신뢰성을 높이기 위하여 두 가지 서로 다른 배경 분리 알고리즘을 이용하였다. 정량적인 비교 평가를 위해 F-measure 및 FPS(frames per second)를 이용하였다. 본 논문에서 제시된 정량적인 분석 결과는 실시간 지능형 축구 동영상 분석 시스템 개발을 위해 고속 배경 분리 기술을 연구하고자 하는 연구자 및 개발자들에게 유용한 벤치마크가 될 것으로 예상된다.