이 논문은 얼굴인식에 있어서 중요한 얼굴 영역과 머리 영역을 차영상을 이용하여 분리하는 방법을 제안한다. 먼저 입력영상에 대한 CMYK 영상 중 K 영상을 가지고 머리 영역을 분리한 후에 YIQ 영상의 Y영상과 머리 영상과의 차영상을 이용하여 얼굴영역을 분리한다. 분리한 머리영역과 얼굴영역에 대하여 라벨링을 하여 각 영역을 얻는다. 제안한 방법은 머리와 얼굴 영역을 뚜렷하게 분리하여 특징 점 추출 시 매우 유용할 것이다.
위성영상의 분류는 원격탐사의 가장 기본적인 분야이다. 위성영상분리도 위성영상의 분류에 있어 영상 정확도 향상에 매우 효율적이라 할 수 있다. 영상분류를 향상시키기 위해서 분리도의 특성을 파악하여 분류의 정확도와의 상관관계를 분석하였다. 영상은 영상마다의 분리도를 비교, 분석하기 위해 IKONOS 영상, SPOT 5 영상, Landsat IM 영상을 1m의 해상도로 리샘플링하였다. 본 연구에서 위성영상별로 클래스 분리도를 측정한 결과 분리도 값이 대체로 $1,600{\sim}2,000$으로 높게 나타났다.
본 연구에서는 고정점 알고리즘의 독립성분분석과 원신호의 시간적 상관성을 고려한 견실 알고리즘의 독립성분분석을 혼합한 조합형 독립성분분석에 의한 혼합영상의 분리를 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법의 경신규칙을 이용함으로써 빠른 분리속도와 우수한 분리성능을 가지며, 견실 알고리즘은 2차적 통계성의 일괄처리 알고리즘으로 시간적 상관성 및 낮은 kurtosis를 가진 영상분리에 효과적이다. 이들 기법들을 $512{\times}512$ 픽셀의 4개 영상으로부터 임의의 혼합행렬에 따라 발생되는 흔합영상의 분리에 적용한 결과, 우수한 분리성능과 빠른 분리속도가 있음을 확인하였다.
본 연구에서는 고정된 카메라로부터 입력되는 영상열에서 이동 물체를 신뢰성있게 분리하기 위해 형태 정보를 이용한 확장 방법을 제안한다. 영역 분리의 핵심은 배경으로부터 주위 잡음 영역과 무관하게 이동 물체 영역을 분리하는 기술이라고 볼 수 있다. 제안된 방법은 초기 이동 물체가 존재하지 않는 영상을 참고 영상(reference image)으로 하여 입력 영상(input image)과의 차영상(subtraction image)을 구하고, 차영상의 히스토그램(histogram)에서 배경잡음 모델링(modeling)을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 국부 최대값들(local maxima)을 이용해 후보 초기 영역을 선정한 후, 이 영역을 기반으로 영역의 형태정보를 이용하여 영역을 선별적으로 확장하면서 결합하는 방법을 사용하였다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역 분리 방법보다 주위 잡음과 무관하게 이동 물체를 분리할 수 있음을 확인할 수 있었다.
이 논문에서는, 독립성분해석기법과 EM기법을 이용한 새로운 혼합영상분리 방법을 제안한다. 독립성분해석기법은 통계적으로 독립된 랜덤변수들의 선형조합으로 측정대상 랜덤신호를 표기하는 여러 통계신호처리 기법 중의 하나로, 정보의 분리, 특징 추출 통의 응용분야에 적용되고 있다. 기술적으로는, 독립성분기법은 주성분 분리기법의 확장이라 볼 수 있고, 근래에 혼합정보의 분리에 관련하여 많이 연구되고 있다. 현재까지의 연구 결과로는 혼합영상의 분리에 있어 독립성분해석기법만으로는 혼합영상분리의 해를 얻지 못하고 있다. 이러한 독립성분해석기법의 약점을 보완하는 방범으로, 최근에 이노베이션 프로세서를 전처리로 하는 독립성분해석기법을 혼합한 시스템을 이용한 혼합영상 분리가 시도되었다. 이노베이션 프로세서를 전처리로 첨가한 혼합영상분리의 과정도 독립성분해석기법만을 사용한 경우보다는 향상된 혼합영상분리를 하지만, 분류된 영상들이 원래의 혼합 전의 영상과 많이 다른 결과를 내고 있다. 기존의 방법들인 독립성분해석기법이나 이노베이션이 전처리로 적용된 경우에도 혼합이전의 영상간의 상관관계가 클 경우, 혼합영상의 분류가 잔 이루어지지 않는다. 본 논문에서는 이 약점을 보완하기 위하여. EM이론을 기존의 시스템에 전처리로 첨가하여 혼합 영상의 분리를 향상시키고자 하였다. 실험 결과에서는 최근에 연구된 이노베이션의 방법보다 EM을 적용시킨 경우가 향상된 혼합영상의 분리의 결과를 보여 주고 있다.
본 논문은 이동물체 영역을 신뢰성 있게 분리하는데 기초가 되는 seed를 정확하게 선정하고, 선정된 seed를 중심으로 영역을 확장함으로써 이동물체 영역을 분리하기 위한 방법을 제안한다. 고정된 카메라로부터 입력되는 연속된 영상열로부터 초기의 이동물체가 존재하지 않는 영상을 참고영상으로 하여 입력영상과의 차영상을 구하고 차영상의 히스토그램에서 배경잡음 모델링을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 Local Maxima 들을 이용해 후보 seed를 선정한 후, 이드의 특징값들을 분석하여 이동물체의 seed와 배경의 seed 를 결정하고 이 두 개의 seed를 기반으로 watershed 알고리즘을 적용하여 영역을 확장함으로써 이동물체 영역을 추출한다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역분리 알고리즘보다 주위 잡음의 영향을 적게 받으며 효과적으로 이동물체를 분리할 수 있음을 확인할 수 있었다.
본 논문은 뇌의 축방향(axial sect ion)에 대하여 촬영한 뇌의 자기공명 영상(Magnetic Resonance Imaging)을 대상으로 뇌의 영역만을 분리하기 위한 방법을 제안하고 있다. MR영상은 슬라이스마다 다른 분포값을 가지기 때문에 각 슬라이스 별로 조직의 특성을 파악하여 뇌의 영역을 분리하였다. 히스토그램의 명암값 분포를 분석하여 배경과 뇌를 둘러싸고 있는 외피를 제거하고 라벨링(label1ing) 알고리즘을 적용하여 뇌만 분리 할 수 있도록 하는 마스크 영상을 만들어 이것을 이용하여 원영상으로부터 뇌의 영역만을 분리하였다.
본 논문에서는 문자열 영역 추출을 위한 3배 축소 명함 영상, 개별 문자 추출을 위한 2배 축소 명함 영상, 정확한 인식을 위한 원본 영상으로 명함 영상을 분리하고, 분리된 영상들을 대상으로 각 영상 크기에 적합한 처리를 수행하고 각각의 결과들을 이용하여 정확한 문자를 추출할 수 있는 방법을 제안한다 그리고 추출된 개별 문자들의 인식을 위해서 ART1을 적용한 개선된 RBF 네트워크를 제안하여 적용한다 제안된 명함 추출 방법은 원 영상을 각각의 처리 방법에 적합하도록 하기 위해서 다해상도로 분리한다. 문자열의 추출은 문자들의 간격을 축소 시켜서 블록을 추출하기 쉬운 적절한 최소 크기의 영상에서 수행하고, 개별 문자의 추출은 문자들의 간격을 분리할 수 있는 적절한 영상의 크기에서 수행한다 개별 문자 인식은 문자의 형태학적 특성을 잘 나타내기 위해서 원본 영상에 적용한다 본 논문에서 제안한 추출 방법은 문자를 정확히 추출할 수 있으며 병렬 처리가 가능하여 처리시간을 단축할 수 있는 장점을 가진다. 그리고 정확히 추출된 개별 문자들을 개선된 R8F 네트워크를 이용하여 인식률을 향상시킨다. 제안된 명함 추출 및 인식 방법의 성능을 확인하기 위해서 실제 영문 명함 영상을 대상으로 실험한 결과, 기존의 방법보다 명함 추출 및 인식에서 우수한 성능이 있음을 확인하였다.
영상 정보에 기반한 지능형 교통 정보 시스템(ITS)의 응용 분야에서, 차량의 그림자 제거와 겹침 차량을 분리하기 위하여 3차원 물체의 특징을 이용하며 차량 형상을 분리하는 기법을 제안한다. 제안하는 기법은 차량을 분리하기 위하여 연속 프레임에서 배경을 수정하고, 배경 영상과 현재 입력 영상의 차이를 이용한다. 또한 그림자를 제거하고 겹침 차량을 분리하기 위하여, 1) 3차원 증거를 차량 증거 영역에서 검출하여 군집화하고, 2) 독립 차량의 중심 위치를 판단하고, 3) 다시 임계치에 의해 차량의 형상을 분리한다. 단순 임계치에 의해 차량을 분리하는 기법은 기상조건 등에 민감하기 때문에 여러 조건에 따라 다른 알고리즘을 적용해야 하지만 제안하는 기법은 동일한 알고리즘으로 여러 기상조건에 적응이 가능하다.
본 논문에서는 "Full-HD급($1920{\times}1080$) 축구 동영상" 분석을 위해 필수적인 "배경 분리"에서 "영상 다운 샘플링"이 배경 분리 성능에 미치는 영향에 대해 정량적으로 분석 및 고찰한다. 이를 위해 본 논문에서는 배경 분리 정확도 뿐만 아니라 배경 분리 속도 관점에서 영상 다운 샘플링이 미치는 영향을 평가하였다. 또한 실험의 신뢰성을 높이기 위하여 두 가지 서로 다른 배경 분리 알고리즘을 이용하였다. 정량적인 비교 평가를 위해 F-measure 및 FPS(frames per second)를 이용하였다. 본 논문에서 제시된 정량적인 분석 결과는 실시간 지능형 축구 동영상 분석 시스템 개발을 위해 고속 배경 분리 기술을 연구하고자 하는 연구자 및 개발자들에게 유용한 벤치마크가 될 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.