• Title/Summary/Keyword: 영상기반 딥러닝

Search Result 744, Processing Time 0.025 seconds

JPEG AI의 부호화 프레임워크들의 분석 및 활용 사례에 대한 소개

  • 한승진;김영섭
    • Broadcasting and Media Magazine
    • /
    • v.28 no.1
    • /
    • pp.13-28
    • /
    • 2023
  • 이미지 압축은 이미지 및 영상처리에서 주요한 역할을 하며, 자율주행, 클라우드, 영상 송출 등의 분야에서 빅데이터를 처리해야 하는 수요가 늘어남에 따라 지속적인 연구가 진행 중이다. 그 중심에는 딥러닝(deep learning)의 발전이 자리잡고 있으며, 심층 신경망(deep neural network)을 효과적으로 학습하는 알고리즘들을 적용한 논문들은 기존 압축 포맷인 JPEG, JPEG 2000, MPEG 등의 압축 성능을 뛰어넘는 결과를 보여 주고 있다. 이에 따라 JPEG AI는 딥러닝 기반 학습 이미지 압축의 표준을 제정하는 일을 진행 중이다. 본 기고에서는 JPEG AI가 표준화하고자 하는 기술과 JPEG AI에 제안한 압축 프레임워크들을 분석하고, 활용 사례들을 소개하여 JPEG AI 기반 학습 이미지 압축 모델의 동향에 대해 알아보고자 한다.

  • PDF

Improvement of concrete crack detection using Dilated U-Net based image inpainting technique (Dilated U-Net에 기반한 이미지 복원 기법을 이용한 콘크리트 균열 탐지 개선 방안)

  • Kim, Su-Min;Sohn, Jung-Mo;Kim, Do-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.65-68
    • /
    • 2021
  • 본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.

  • PDF

Dependency of Generator Performance on T1 and T2 weights of the Input MR Images in developing a CycleGan based CT image generator from MR images (CycleGan 딥러닝기반 인공CT영상 생성성능에 대한 입력 MR영상의 T1 및 T2 가중방식의 영향)

  • Samuel Lee;Jonghun Jeong;Jinyoung Kim;Yeon Soo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2024
  • Even though MR can reveal excellent soft-tissue contrast and functional information, CT is also required for electron density information for accurate dose calculation in Radiotherapy. For the fusion of MRI and CT images in RT treatment planning workflow, patients are normally scanned on both MRI and CT imaging modalities. Recently deep-learning-based generations of CT images from MR images became possible owing to machine learning technology. This eliminated CT scanning work. This study implemented a CycleGan deep-learning-based CT image generation from MR images. Three CT generators whose learning is based on T1- , T2- , or T1-&T2-weighted MR images were created, respectively. We found that the T1-weighted MR image-based generator can generate better than other CT generators when T1-weighted MR images are input. In contrast, a T2-weighted MR image-based generator can generate better than other CT generators do when T2-weighted MR images are input. The results say that the CT generator from MR images is just outside the practical clinics and the specific weight MR image-based machine-learning generator can generate better CT images than other sequence MR image-based generators do.

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

Comparison and analysis of chest X-ray-based deep learning loss function performance (흉부 X-ray 기반 딥 러닝 손실함수 성능 비교·분석)

  • Seo, Jin-Beom;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1046-1052
    • /
    • 2021
  • Artificial intelligence is being applied in various industrial fields to the development of the fourth industry and the construction of high-performance computing environments. In the medical field, deep learning learning such as cancer, COVID-19, and bone age measurement was performed using medical images such as X-Ray, MRI, and PET and clinical data. In addition, ICT medical fusion technology is being researched by applying smart medical devices, IoT devices and deep learning algorithms. Among these techniques, medical image-based deep learning learning requires accurate finding of medical image biomarkers, minimal loss rate and high accuracy. Therefore, in this paper, we would like to compare and analyze the performance of the Cross-Entropy function used in the image classification algorithm of the loss function that derives the loss rate in the chest X-Ray image-based deep learning learning process.

Accuracy Assessment of Land-Use Land-Cover Classification Using Semantic Segmentation-Based Deep Learning Model and RapidEye Imagery (RapidEye 위성영상과 Semantic Segmentation 기반 딥러닝 모델을 이용한 토지피복분류의 정확도 평가)

  • Woodam Sim;Jong Su Yim;Jung-Soo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.269-282
    • /
    • 2023
  • The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.

A Study on Lightweight and Optimizing with Generative Adversarial Network Based Video Super-resolution Model (생성적 적대 신경망 기반의 딥 러닝 비디오 초 해상화 모델 경량화 및 최적화 기법 연구)

  • Kim, Dong-hwi;Lee, Su-jin;Park, Sang-hyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1226-1228
    • /
    • 2022
  • FHD 이상을 넘어선 UHD급의 고해상도 동영상 콘텐츠의 수요 및 공급이 증가함에 따라 전반적인 산업 영역에서 네트워크 자원을 효율적으로 이용하여 동영상 콘텐츠를 제공하는 데에 관심을 두게 되었다. 기존 방법을 통한 bi-cubic, bi-linear interpolation 등의 방법은 딥 러닝 기반의 모델에 비교적 인풋 이미지의 특징을 잘 잡아내지 못하는 결과를 나타내었다. 딥 러닝 기반의 초 해상화 기술의 경우 기존 방법과 비교 시 연산을 위해 더 많은 자원을 필요로 하므로, 이러한 사용 조건에 따라 본 논문은 초 해상화가 가능한 딥 러닝 모델을 경량화 기법을 사용하여 기존에 사용된 모델보다 비교적 적은 자원을 효율적으로 사용할 수 있도록 연구 개발하는 데 목적을 두었다. 연구방법으로는 structure pruning을 이용하여 모델 자체의 구조를 경량화 하였고, 학습을 진행해야 하는 파라미터를 줄여 하드웨어 자원을 줄이는 연구를 진행했다. 또한, Residual Network의 개수를 줄여가며 PSNR, LPIPS, tOF등의 결과를 비교했다.

  • PDF

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Design of a Zone-based Population Estimation System using Deep Learning Image Recognition for Digital Twin (딥러닝 영상인식을 이용한 디지털 트윈 기반 구역별 유동 인구 추정 시스템 설계)

  • Ok-Kyoon Ha;Jin-chan Kim;Yong-jin Kim;Yong-hun Ok;Dong-hun Na;Uk-ryeol Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.41-42
    • /
    • 2023
  • 인구 밀집도가 높은 곳에서의 안전사고 대응과 이에 대한 예방을 위한 기술 및 해결 방안의 필요성이 증가하고 있다. 이를 위한 기존의 기술들은 지능형 CCTV 기반의 경고 알림을 울리는 방식과 스마트폰의 신호를 수집하여 유동인구를 측정하는 기술 등이 사용되고 있다. 그러나 군중 밀집 사고의 원인인 병목현상과 군중 난류 현상까지 대응하지는 못하는 문제점이 있다. 본 논문에서는 CCTV로부터 수집된 영상 정보만으로 딥러닝 영상인식 기술을 이용하여 병목현상이 일어나기 쉬운 출입구의 유·출입 인구 카운팅과 광장의 밀집도 분석을 디지털 트윈 기반으로 실시하고 이를 통해 위험 상황 발생 시 출입구의 통제와 대피를 위한 안내가 가능한 시스템을 제시한다. 제시하는 시스템은 유동 인구가 많고 인구의 급격한 밀집으로 인해 발생할 수 있는 안전사고의 예방과 이를 해결하기 위한 통제 및 안내를 위한 대처 방법으로 활용할 수 있다.

  • PDF

A Study on data pre-processing for rainfall estimation from CCTV videos (CCTV 영상 기반 강수량 산정을 위한 데이터 전처리 방안 연구)

  • Byun, Jongyun;Jun, Changhyun;Lee, Jinwook;Kim, Hyeonjun;Cha, Hoyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.167-167
    • /
    • 2022
  • 최근 빅데이터에 관련된 연구에 있어 데이터의 품질관리에 대한 논의가 꾸준히 이뤄져 오고 있다. 특히 이미지 처리 및 분석에 활용되어온 딥러닝 기술의 경우, 분류 작업 및 패턴인식 등으로부터 데이터의 특징을 추출함으로써 비지도학습(Unsupervised Learning)을 가능하게 한다는 장점이 있음에도 불구하고 빅데이터를 다루는 과정에 있어 용량, 다양성, 속도 및 신뢰성 측면에서의 한계가 있었다. 본 연구에서는 CCTV 영상을 활용한 강수량 산정 모델 개발에 있어 예측 정확도 향상 및 성능 개선을 도모할 수 있는 데이터 전처리 방법을 제안하였다. 서울 근린 AWS 4개소 지역(김포장기, 하남덕풍, 강동, 성남) 및 중앙대학교 지점 내 CCTV를 설치한 후, 최대 9개월의 영상을 확보하여 강수량 산정을 위한 딥러닝 모델을 개발하였다. 배경분리, 조도조정, 영역설정, 데이터증진, 이상데이터 분류 등이 가능한 알고리즘을 개발함으로써 데이터셋 자체에 대한 전처리 작업을 수행한 후, 이에 대한 결과를 기존 관측자료와 비교·분석하였다. 본 연구에서 제안한 전처리 방법들을 적용한 결과, 강수량 산정 모델의 예측 정확도를 평가하는 지표로 선정한 평균 제곱근 편차(Root Mean Square Error; RMSE)가 약 30% 감소함을 확인하였다. 본 연구의 결과로부터 CCTV 영상 데이터를 활용한 강수량 산정의 가능성을 확인할 수 있었으며 특히, 딥러닝 모델 개발시 필요한 적정 전처리 방법들에 대한 기준을 제시할 수 있을 것으로 판단된다.

  • PDF