• 제목/요약/키워드: 영과잉 음이항모형

검색결과 16건 처리시간 0.018초

영과잉 음이항회귀 모형을 이용한 보험설계사들의 이직횟수 적합 (Fit of the number of insurance solicitor's turnovers using zero-inflated negative binomial regression)

  • 전희주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1087-1097
    • /
    • 2017
  • 본 연구는 계수자료 (count data)를 반응변수로 갖는 포아송회귀 모형, 음이항회귀 모형, 영과잉 포아송회귀 모형, 영과잉 음이항회귀 모형의 4 모형의 비교를 통해 보험 설계사들의 이직횟수 적합을 위한 최적모형을 찾고자 한다. 보험설계사 이직횟수의 분산이 평균보다 큰 과대산포가 존재하고 0인 경우의 비중이 높을 경우에 영과잉 음이항회귀 모형을 적합하는 것이 타당함을 보여주고 보험 설계사들의 이직횟수에 영향을 주는 요인을 규명하고자 한다. 로그우도값, AIC, SBC 등을 고려하여 보험설계사 이직횟수 적합을 최적의 모형은 영과잉 이항모형과 음이항회귀모형의 결합인 영과잉 음이항 모형이 선택되었다. 영과잉 이항모형에 포함된 변수로는 성별, 총 보험설계사 근무연월, 교차모집 설계사 등록, 보유고객 수, 소속회사 유형이었고, 음이항회귀 모형에 포함된 변수로는 직무만족, 조직몰입, 채널경영만족, 총 보험설계사 근무연월, 현 직장에서 근무연월, 소속회사 유형이었다. 영과잉 음이항회귀 모형의 적합결과, 이직횟수에 유의한 영향을 주는 요인으로는 현 직장에서 근무연월, 총 보험설계사 근무연월, 소속회사 유형, 채널경영만족, 직무만족 순으로 나타났다.

폴랴-감마 잠재변수에 기반한 베이지안 영과잉 음이항 회귀모형: 약학 자료에의 응용 (A Bayesian zero-inflated negative binomial regression model based on Pólya-Gamma latent variables with an application to pharmaceutical data)

  • 서기태;황범석
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.311-325
    • /
    • 2022
  • 0의 값을 과도하게 포함하는 가산자료는 다양한 연구 분야에서 흔히 나타난다. 영과잉 모형은 영과잉 가산자료를 분석하기 위해 가장 일반적으로 사용되는 모형이다. 영과잉 모형에 대한 전통적인 베이지안 추론은 조건부 사후분포의 형태가 폐쇄형 분포로 나타나지 않아 모형 적합 과정이 용이하지 않다는 한계점이 존재했다. 그러나 최근 Pillow와 Scott (2012)과 Polson 등 (2013)이 제안한 폴랴-감마 자료확대전략으로 인해, 로지스틱 회귀모형과 음이항 회귀모형에서 깁스 샘플링을 통한 추론이 가능해지면서, 영과잉 모형에 대한 베이지안 추론이 용이해졌다. 본 논문에서는 베이지안 추론에 기반한 영과잉 음이항 회귀모형을 Min과 Agresti(2005)에서 분석된 약학 연구 자료에 적용해본다. 분석에 사용된 자료는 경시적 영과잉 가산자료로 복잡한 자료 구조를 가지고 있다. 모형 적합 과정에서는 깁스 샘플링을 통한 추론을 수행하기 위해 폴랴-감마 자료확대전략을 사용한다.

조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석 (Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application)

  • 윤재은;황선영
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.583-592
    • /
    • 2015
  • 영-과잉(zero-inflation) 현상은 최근 계수(count) 시계열 분석의 주요토픽으로 다루어지고 있다. 본 논문에서는 영-과잉 계수 시계열의 변동성을 연구하고 있다. 기존의 정수형 모형인 INGARCH(integer valued GRACH) 모형에 조건부 포아송 및 조건부 음이항 분포를 사용하여 변동성에 영-과잉 현상을 추가하였다. 모수 추정 방법으로 EM알고리즘을 사용하였으며 국내 콜레라 발생건수에 적용시켜 보았다.

서로 다른 산포를 허용하는 이변량 영과잉 음이항 회귀모형 (Bivariate Zero-Inflated Negative Binomial Regression Model with Heterogeneous Dispersions)

  • 김동석;정슬기;이동희
    • Communications for Statistical Applications and Methods
    • /
    • 제18권5호
    • /
    • pp.571-579
    • /
    • 2011
  • 본 연구에서는 두 반응 변수에 서로 다른 산포를 허용하는 새로운 이변량 영과잉 음이항 회귀모형을 제안하고, Deb과 Trivedi (1997)에 나타난 헬스케어 자료를 이용하여 두 반응변수가 갖는 서로 다른 산포도를 무시한 Wang (2003)이 제안한 이변량 영과잉 음이항 회귀모형과의 효율성을 로그우도와 AIC의 관점에서 비교 하였다. 모형적합결과, 본 연구에서 제안한 모형이 모형선택기준 관점에서 기존모형에 비하여 월등히 우수한 결과를 보여주었다.

영과잉 공간자료의 분석 (Zero In ated Poisson Model for Spatial Data)

  • 한준희;김창훈
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.231-239
    • /
    • 2015
  • 가산자료(counts data)를 적합 하는 경우 보통 포아송 모형이 가장 먼저 고려된다. 과산포 문제가 있을 경우도 유사 포아송(quasi Poisson) 모형이나 음이항(Negative binomial) 모형으로 대부분 설명이 가능하다. 하지만, 가산자료 중에는 포아송분포를 가정한 기대 빈도 이상으로 많은 0이 관측되는 자료가 있고 이를 영과잉(Zero inflated) 가산 자료라고 부른다. 영과잉 가산자료를 설명하기 위해 영과잉 포아송(ZIP) 모형이나 영과잉 음이항(ZINB) 모형을 이용할 수 있다. 더 나아가 영과잉 가산자료가 공간상관관계까지 있을 경우 영과잉 문제뿐만 아니라 유의할 수 있는 공간효과까지 고려해야하고 이를 위해 혼합효과모형(mixed effects model)이 고려 될 수 있다. 본 연구에서 사용된 2004년 기준 부산시 남성동별 갑상선암 발생자수 자료를 이용하여, 일반선형 포아송모형, 영과잉 포아송모형, 공간 영과잉 포아송모형을 적합하여 비교해보았다.

어가의 고용량 결정요인 분석 (An Analysis on the Determinants of Employed Labour Quantity in the Fishing Industry)

  • 김태현;박철형;남종오
    • 자원ㆍ환경경제연구
    • /
    • 제27권3호
    • /
    • pp.545-567
    • /
    • 2018
  • 본 연구는 포아송모형, 음이항모형, 영과잉 포아송모형, 영과잉 음이항모형을 이용하여 어가의 고용량 결정요인을 분석하고, 개별모형 간 고용량 결정요인을 비교 분석한다. 이들 모형의 추정에 사용된 자료는 통계청에서 제공하는 2010년과 2015년의 농림어업총조사 마이크로 데이터이며, 이들 자료를 풀링(Pooling)하여 고용량 결정요인과 그 변화분에 대해 추정한다. 분석모형의 선정 결과, 과대 산포 경향을 갖고 있으면서 자가 노동 및 가족 경영으로 고용을 대체하고 있는 수산업의 특성을 모형에 동시에 반영하고 있는 영과잉 음이항모형이 선정되었다. 또한 2010년 대비 2015년 고용량 결정요인의 변화분을 분석해 본 결과, 어선을 보유한 어가와 판매금액이 많은 어가는 고용량 감소에 유의한 영향을 미치는 것으로 나타난 반면, 어가의 종사경력은 길수록 고용량 증가에 유의한 영향을 미치는 것으로 나타났다. 결론적으로 자본화된 어가와 고령화의 가속화가 수산업의 어가 고용량 수 변화에 유의한 영향을 미친 것으로 나타났다.

중소기업 청년인턴 이직횟수 결정요인 분석 (The study on the determinants of the number of job changes)

  • 박성익;류장수;김종한;조장식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.387-397
    • /
    • 2015
  • 본 연구에서는 청년인턴 DB와 고용보험 DB를 사용하여 중소기업 청년인턴의 이직횟수에 영향을 미치는 요인을 분석하였다. 이직횟수는 음수가 아닌 정수 값만 가지는 계수 데이터 (count data)이므로 일반적인 선형회귀모형을 적용하는 것은 문제가 있다. 따라서 계수 데이터에 적합한 회귀모형으로 포아송 회귀모형, 영과잉 포아송 회귀모형, 음이항 회귀모형, 영과잉 음이항 회귀모형 등 4개의 회귀모형을 적용하였다. 분석결과 최적모형으로 영과잉 음이항 회귀모형이 선택되었다. 주요 분석결과를 정리하면 다음과 같다. 첫째, 통제집단 (비인턴집단)에 비해서 처리집단 (인턴집단)이 통계적으로 유의하게 이직경험이 낮게 나타났다. 둘째, 연령이 작을수록 통계적으로 유의하게 이직경험이 낮게 나타났다. 셋째, 여자에 비해서 남자가 유의하게 이직횟수가 높게 나타났다. 마지막으로 기업규모가 클수록 이직횟수가 유의하게 감소하는 것으로 나타났다.

식중독 발생 건수에 대한 계층 시계열 예측 (Forecasting hierarchical time series for foodborne disease outbreaks)

  • 여인권
    • 응용통계연구
    • /
    • 제37권4호
    • /
    • pp.499 -508
    • /
    • 2024
  • 이 연구에서는 식중독 발생건수를 원인물질별로 나눈 자료와 합한 자료를 별개로 분석하여 예측값을 유도한 후 계층구조를 만족하도록 하는 계층 시계열 예측에 대해 알아본다. 원인물질별 식중독 방생건수는 영과잉 포아송 회귀모형과 음이항 회귀모형으로 분석하고 합한 식중독 발생건수 포아송 회귀모형과 음이항 회귀모형으로 분석한다. 계층 시계열 예측을 위해 최적결합 중 하나인 Wickramasuriya 등 (2019)의 MinT 추정이 사용되었다. 계층조정 과정에서 발생한 음의 예측값은 0으로 수정하고 나머지 최하위 변수에 가중치를 곱해 계층구조를 만족시킨다. 실증분석 결과를 보면 원인물질별 예측에서는 계층조정을 한 결과와 하지 않은 결과에 차이가 거의 없었으나 주요, 기타 및 전체에 대한 예측에서는 계층조정 한 결과가 대체로 우수한 것으로 나타났다. 중요한 것은 계층조정을 하지 않으면 최하위 변수의 예측빈도가 주요나 기타의 예측빈도 보다 큰 경우도 발생하지만 제안된 방법을 적용하면 계층구조를 이루는 예측값을 얻을 수 있다.

원인균별 식중독 발생 건수 예측 (Prediction of the Number of Food Poisoning Occurrences by Microbes)

  • 여인권
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.923-932
    • /
    • 2013
  • 이 논문에서는 우리나라에서 발생하는 원인균별 식중독 발생건수를 예측하는 방법을 제안한다. 우리나라에서 보고되는 주별 식중독 발생 건수를 원인균로 나누면 자료에 많은 0의 관측값이 포함되어 있으며 식중독 발생 간에 종속성을 가진다. 이 현상을 모형화하기 위해 이 논문에서는 전체 식중독 건수를 자기회귀모형으로 예측하고 원인균별 식중독 발생 확률을 다범주 로짓모형으로 추정한다. 예측된 식중독 건수와 추정된 원인균별 식중독 발생 확률을 곱하여 원인균별 식중독 발생건수를 예측한다. 제안된 방법의 타당성을 확인하기 위해 평균제곱오차와 평균절대편차를 이용하여 제안 방법과 영과잉모형을 비교해 본다.

영-과잉 회귀모형을 활용한 폭염자료분석 (Heat-Wave Data Analysis based on the Zero-Inflated Regression Models)

  • 김성태;박만식
    • Journal of the Korean Data Analysis Society
    • /
    • 제20권6호
    • /
    • pp.2829-2840
    • /
    • 2018
  • 음이 아닌(non-negative) 측정값을 가지는 확률변수에 있어서, 영(0)이 과도하게 측정되는 자료를 반연속형(semi-continuous) 자료와 영-과잉(zero-inflated) 자료로 구분한다. 이러한 자료에서는 특정 확률 분포(probability distribution) 하에서의 확률보다 훨씬 큰 확률로 0을 관측하게 되는데, 연속형(continuous) 확률분포를 고려하는 경우에는 반연속형으로, 이산형(discrete) 확률분포를 고려하는 경우에는 영-과잉이라고 한다. 본 연구에서는 경계값(0)의 측정 여부에 관한 모형과 0보다 큰 확률변수에 대한 확률분포를 활용한 모형 등 두 개의 부문으로 이루어진 모형, 즉 2-부문 모형(two-part model)을 소개하고자 한다. 특히, 이산형 확률분포 중 포아송 분포와 음이항 분포를 고려한 영-과잉 회귀모형(regression model)을 설명하고 그 특성을 파악하고자 한다. 실증연구에서는 이러한 영-과잉 회귀모형을 활용하여 지난 10년(2009년부터 2018년) 간 한국의 여름철(6-8월) 폭염주의보(heat-wave advisory) 및 폭염경보(heat-wave warning) 발생일수를 적합하였다. 또한 공간예측기법 중 하나인 범용크리깅(universal kriging)을 이용하여 적합결과를 바탕으로 한 폭염 발생일수에 대한 예측지도를 작성하였다.