• 제목/요약/키워드: 염화물용액

검색결과 107건 처리시간 0.027초

세공용액분석에 의한 시멘트의 염화물 고정화율 평가 (Evaluation of Chloride Bound Ratio in Cement Pastes by Pore Solution Analysis)

  • 소승영;윤성진;소양섭
    • 콘크리트학회논문집
    • /
    • 제14권5호
    • /
    • pp.789-795
    • /
    • 2002
  • 개정된 콘크리트 표준시방서에 허용된 양의 염화물 이온 및 제염되지 않은 해사를 잔골재로 사용할 경우 콘크리트 배합시 혼입될 염화물 이온의 거동과 고정화율을 평가하기 위해 시멘트 페이스트 내 세공용액을 추출하여 분석한 실험을 통해 얻은 결론은 다음과 같다. 1 재령에 따른 세공용액 내 염화물 이온 농도는 수화 진행에 따라 수화생성물에 흡착되는 염화물량의 증가로 재령이 증가하면서 감소하는 것으로 나타났으며, 세공용액 내 측정 염화물량을 고정화되지 않은 염화물로 보고 혼합수의 농도와 비교할 경우 재령 49일의 고정화율은 64~90%였다. 2. 증발수량으로 측정한 세공용액량을 기준으로 시멘트 내 염화물 고정화율을 산정한 결과 염화물 혼입량이 시멘트 중량의 0.046~0.16%로 비교적 적은 PI~P3의 경우 염화물 고정화율이 91.8~93.5%에 이르나 염화물 혼입량이 시멘트 중량의 0.3% 인 P4의 경우 89.1 %로 낮아지며, 시멘트 중량에 대해 0.617%의 염화물이 혼입된 PS는 혼입된 염화물 중 77%만이 고정화되었다. 3. 시멘트 중량에 대한 염화물 고정화율은 혼입량에 따라 0.015~0.475%로 나타났다. 이 중 시멘트 중량에 대해 0.091% 이상의 염화물 이온이 혼입될 경우 염화물 혼입량이 2배씩 증가함에도 염화물 고정화량은 1.7~l.8배 증가하고 있어 시멘트 중량에 대한 고정화율도 혼입량이 증가할수록 낮아졌다. 4. 염화물 혼입량이 증가함에 따라 염화물의 고정화율은 증가하지만 고정화되지 못하고 세공용액 중에 남아있는 염화물의 절대량도 크게 증가하였다.

폐구리염화물용액의 분무열분해반응에 의한 생성분말의 특성에 관한 연구 (A Study on the Properties of Produced Powder by Spray Pyrolysis Process from Waste Copper Chloride Solution.)

  • 박희범;최재권;한진아;유재근
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 춘계학술대회 발표논문집
    • /
    • pp.47-48
    • /
    • 2001
  • 본 연구의 목적은 폐 구리염화물 용액을 원료로 사용하여 분무열분해 공정에 의해 평균입도가 1㎛이하이며 입도분포가 균일하고 치밀한 조직을 나타내는 미립의 구리산화물 분말을 제조하는데 있다. 또한 본 연구에서는 분무열분해 공정에 의해 생성되는 분말의 특성에 영향을 미치는 반응 온도, 원료용액의 유입속도, 분위기 기체 및 공기의 유입속도, nezzle tip 크기 및 원료용액의 농도 등의 반응인자들의 영향을 검토하였다.

이미지 분석을 이용한 균열 콘크리트 내 염화물 침투 정량화 평가 (Quantifying Chloride Ingress in Cracked Concrete Using Image Processing)

  • 김건수;박기태;김재환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권4호
    • /
    • pp.57-64
    • /
    • 2022
  • 염화물은 철근 콘크리트 구조물의 주요 열화 요인 중 하나로 철근 부식을 발생시켜 구조물의 성능을 저하시킨다. 염해에 의한 철근 콘크리트 구조물의 열화정도 또는 철근 부식 개시 시기를 확인하기 위해서는 철근 깊이에서의 염화물 농도 또는 콘크리트 내에서 염화물 침투 속도를 확인할 필요가 있다. 일반적인 콘크리트내 염화물 침투를 확인할 수 있는 방법으로는 염화물 침투 깊이별로 전위차 적정법과 같은 방법으로 염화물 농도를 측정하는 염화물 프로파일링 방법이나 질산은 용액을 이용하여 콘크리트의 변색된 범위를 다지점 측정하여 침투 깊이를 측정하는 방법이 대표적이다. 전자의 경우에는 정확하게 염화물 농도를 직접 측정하기 때문에 염화물 침투 속도 (일반적으로 확산계수)를 정확하게 예측할 수 있는 장점이 있지만, 작업이 번거롭다는 단점이 있다. 후자는 질산은 용액과의 반응에 따른 변색 범위를 측정하여 염화물 침투 깊이를 산정하는 것이기 때문에 간편하고 결과의 신뢰성도 확보할 수 있는 장점이 있지만, 침투 깊이를 산정하는데 있어서 작업자의 숙련도에 따라 오류가 발생할 수 있는 단점이 있다. 본 연구에서는 변색법에 의해 얻어진 결과를 이미지 분석을 통해 콘크리트 내의 염화물 침투 깊이를 분석하였다. 이를 통해 작업자에 의해 발생될 수 있는 오류를 최소화할 수 있도록 하였다. 또한 콘크리트의 미세 균열이 염화물 침투에 미치는 영향에 대해서도 확인하였다. 이미지 분석을 통해 염화물 침투 깊이를 정량화한 결과 염화물은 미세균열부를 통해 빠른 속도로 염화물 침투가 발생한다는 것을 확인 하였기 때문에, 콘크리트 구조물에서는 특히 균열 발생에 주의가 필요할 것으로 판단된다.

Rushton type 반회분식 반응기에서 염화은 반응성 결정화에 관한 연구 (Study on the reaction crystallization of silver chloride in Rushton type semi-batch reactor)

  • 이종석;김우식
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.609-619
    • /
    • 1996
  • Rushton type 반회분식 반응기에서 염화은의 반응성 결정화 과정에 미치는 인자들에 대해 실험적으로 연구하였다. 용액 교반속도, 반응물의 주입속도, 주입방법 및 반응물의 농도 등의 인자가 염화은 결정의 크기 및 크기 분포에 뚜렷한 영향을 미치는 것으로 나타났다. 실험결과로부터 염화은 반응성 결정화에서 용액 내에서의 염화은 과포화 농도 및 과량 이온의 농도 그리고 결저입자 주의에서의 물질전달속도 등의 변화가 이와 같은 인자들과 상호 연관이 있으며 이것이 결정핵 생성 및 성장과정에 직접적으로 영향을 미친 것으로 추론하였다. 그러나, 본 연구에서 실험한 인자들에 의한 염화은의 형태 변화는 나타나지 않았다.

  • PDF

삼염화안티몬과 유기염소화합물 사이의 염소 교환반응에 관한 연구 (A Study on the Chlorine-Exchange Reaction of Antimony Trichloride with Organic Chlorides)

  • 유석환;배영일;최상업
    • 대한화학회지
    • /
    • 제34권1호
    • /
    • pp.19-28
    • /
    • 1990
  • 니트로벤젠 용액 중에서 삼염화안티몬과 염화벤질, 염화-$\alpha$-페닐에틸, 염화디페닐메틸 등의 유기염소화합물 사이의 염소 교환반응에 관한 반응속도론적 연구를 수행하였다. 연구결과 이들 염소교환 반응속도는 삼염화안티몬에 관하여 2차이고 유기염화물에 관하여 1차인 반응속도식을 따르며, Rate = $k_3[SbCl_3]^2$ [Org-Cl] 삼염화안티몬과 유기염화물 사이의 염소 교환반응 속도상수는 유기염화물에 따라 다음과 같은 순서로 증가함을 알았다. 염화벤질 < 염화-$\alpha$-페닐에틸 < 염화디페닐메틸 그리고 이들 염소 교환반응에 관한 메카니즘도 제시하였다.

  • PDF

화학약품용액(化學藥品溶液)에 침지(浸漬)한 콘크리트의 열화(劣化)에 대한 연구(研究) (A Study on the Erosion of Concrete Immersed in Chemical Solution)

  • 문한영;김성수
    • 대한토목학회논문집
    • /
    • 제12권2호
    • /
    • pp.55-66
    • /
    • 1992
  • 인공해수 및 5종류의 약품용액에 시멘트풀, 모르터 및 콘크리트 공시체를 침지하여 강도 및 중량 변화를 측정하고 X-ray, SEM 및 EDS로서 반응생성물과 미세구조를 분석 고찰하였다. 연구결과 황산 및 황산염용액에서는 ${SO_4}^{2-}$ 이온의 침투로 인한 ettringite와 석고의 생성이 열화의 원인이 되었다. 염화물용액에서는 $Cl^-$ 이온의 침투가 콘크리트를 열화시키는 중요한 요인이 되었음을 알 수 있었다.

  • PDF

탄산칼륨과 염화칼슘을 이용한 무기질 복합화 목재 중에 있어서 무기염의 생성과 방부효력 (Formation and Preservative Effectiveness of Inorganic Substances in Wood Treated with Potassium Carbonate and Calcium Chloride)

  • 윤선미;이종선
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권2호
    • /
    • pp.126-132
    • /
    • 2001
  • 탄산칼륨 포화용액을 감압주입한 후, 염화칼숨 포화용액으로 확산처리하여 제조한 무기질 복합화 목재 중에 있어서 물 불용성의 무기염의 생성상태와 구성성분 및 이들 무기염이 생성된 목재의 방부성능에 대하여 조사하였다. 탄산칼륨 포화용액을 주입한 젖은 상태의 시험편을 염화칼슘 포화용액에 24, 72, 120시간 동안 침지시킨후, 미반응 용액 및 부생성물을 제거하기 위하여 흐르는 수도수에 24시간 세척하는 방법으로 무기질 복합화 목재를 제조하였다. 무기염의 생성은 염화칼슘 포화용액 주입 후, 72시간의 염화칼슘 포화용액 침지처리에서 평균 108.1%의 중량 증가율을 보여 최대치에 이르렀다. 시험편의 가도관 내강에 다량의 무기염이 생성되어 있는 것이 관찰되었으며, 이들 무기염은 물에 의해 용탈되지 않고 X선 분석에 의하여 다량의 Ca 원소의 특성 X선이 검출된 점으로부터 물 난용성의 탄산칼슘인 것으로 추정되었다. 처리 시험편에서는 공시균에 의하여 거의 중량감소가 발생하지 않아 가도관 내강에 생성된 탄산칼슘으로 추정되는 무기염이 목재의 방부성능 향상에 기여하는 것으로 밝혀졌다.

  • PDF

콘크리트의 동결융해 내구성에 공기량, 제설제, 노출조건이 미치는 영향에 관한 연구 (Effect of Air Contents, Deicing Salts, and Exposure Conditions on the Freeze-Thaw Durability of the Concrete)

  • 이병덕
    • 한국도로학회논문집
    • /
    • 제12권2호
    • /
    • pp.107-113
    • /
    • 2010
  • 콘크리트의 박리(scaling)는 수분의 존재하에 동결융해 싸이클에 따른 콘크리트의 점진적인 표면열화이다. 특히, 이것은 제설제에 염화물의 존재가 콘크리트 표면박리(스켈링)와 더불어 심한 경우, 굵은골재의 노출 및 탈리로 이어질 수 있다. 본 연구에서는 콘크리트의 스켈링에 대한 저염화물계 제설제(low chloride deicier, LCD)와 염화칼슘 및 염화나트륨 제설제의 상대적인 영향을 ASTM C672에 준하여 실시하였다. 시험 제설제의 농도는 1, 4, 10% 이고, 수돗물은 기준으로 사용하였다. 박리량은 중량으로 평가하였다. 연구결과 4% 농도를 적용하였을 때, 동결융해 56 싸이클 후 콘크리트의 박리는 수돗물에 비해 LCD 용액에서 약 9배, 염화칼슘 용액에서 약 18배, 염화나트륨 용액에서 약 33배 정도 크게 발생하였다. 용액의 농도에 따라서는 고농도인 10%에 비해 4% 농도에서 표면 박리가 가장 현저하게 발생하였는데, 이는 스켈링 발생이 염농도가 3~4%일 때 가장 현저해진다는 기존의 연구결과와 일치함을 알 수 있었다(일본콘크리트공학회, 1999). 또한 콘크리트가 경화된 후, 현장에서 염화나트륨 및 저염화물계 제설제(LCD, 염소이온 중량비 50%)가 살포되고 동결융해 싸이클에 노출된 경우, 제설제에 노출되지 않은 경우의 콘크리트 동해열화에 대해, 콘크리트의 공기량에 따른 영향을 실험적으로 연구하였다. 연구 결과 동결융해 싸이클에 따른 콘크리트 시편은 제설제에 노출되지 않은 것 보다 염화물 제설제 노출에서 스켈링이 더 심한 것으로 나타났고, 염화물 제설제에 노출된 시편이 노출되지 않은 시편 보다 중량 손실이 2배나 되었다. 콘크리트 시편의 상대 동탄성계수는 염화물 제설제에 노출되지 않은 것과 비교하여 염화물 제설제에 노출된 것에서 더 빠르게 감소하였다. 또한 염화나트륨 제설제에 노출된 콘크리트 시편의 상대 동탄성계수는 저염화물계 제설제에 노출된 것 보다 더 빠르게 감소하였다. AE 콘크리트는 염화물과 동결융해 싸이클에 노출되었을 때, Non-AE 콘크리트 보다 성능저하가 크게 지연되었다.