• Title/Summary/Keyword: 염해중성화 방지

Search Result 7, Processing Time 0.02 seconds

강관등표 도장방식 연구

  • Gwak, In-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.88-91
    • /
    • 2018
  • 국내 연안에 설치된 항로표지(등부표,등대 등) 대부분이 철근 콘크리트 형식으로 제작 설치 되어 있다. 초기 구조물 제작시 파손 및 전단, 염해에의 한 콘크리트의 부식에 대한 인식 부족으로 일반적인 색상표시 도장방식으로 마감처리 하여 설치 하였다. 이로 인하여 콘크리트의 파손, 도장부의 탈락으로 인하여 매년 유지보수비용이 투입되고 있는 실정이다. 또한 부식진행 후 현장여건상 보수도장이 취약하고 보수 후에도 내구성 부족(방오수명 2년~3년)으로 지속적인 관리가 필요하다. 그러므로 항로표지의 신규 설치시 강관조 형식의 설계적용이 요구되며 강관조의 가장 큰 취약점인 부식(녹)에 대한 방오방법의 연구가 지속적으로 진행되고 있다. 또한 기 설치된 해상 금속구조물의 경우 보수작업시 장비반입, 작업시간, 작업여건 등이 비말대, 간만대에 따라 변동 하므로 원칙적인 보수가 불가능한 상황에 있다. 그러므로 초기 제작시 부식에 대한 방오도장이 시행 되어야 한다. 기 설치된 콘크리트 구조물 등표는 원칙적인 구조보강 검토 후 염해, 중성화 방지 도장을 시행 하여야 하며 이에 대한 연구를 진행하고 있다.

  • PDF

Evaluation on Performance of Surface Protectors for Protecting Reinforced Concrete Structures (철근 콘크리트 구조물을 보호하기 위한 표면 보호재의 성능 평가)

  • An, Young-Ki;Jang, Suk-Hwan;Chung, Young-Jun;Nam, Yong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.217-223
    • /
    • 2005
  • This study is on the evaluation of three kinds of surface protectors for protecting reinforced concrete against corrosion of reinforcing steel by chloride attack and carbonation. In this study, the test has been carried out on the performance of specimens applied with surface protectors for anti-corrosion and anti-carbonation. The result showed that specimens applied with the three kinds of surface protectors, were excellent in resistance to the corrosion of reinforcing steel and carbonation. Especially the specimen applied with finish coating in conjunction with hydrophobic primer showed great reduction in the corrosion of reinforcing steel and carbonation.

A Study on the Development of Corrosion Inhibitor Treating Surface for Reinforcement Concrete Structures (철근 콘크리트 구조물용 표면 처리형 철근 부식억제제의 개발에 관한 연구)

  • Kim, Do-Gyeum;Koh, Kyoung-Taek;Ryu, Gum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.239-247
    • /
    • 2004
  • When the concrete is subjected to chloride attack or carbonation, the passive steel normally initiate corrosion. By product of corrosion make volume of concrete expand 3 to 8 times and induce the stress which lead cracking and spalling of concrete. It result in the loss of the integrity of the concrete structures. Several corrosion inhibitors imported from America, Japan and Europe are currently being used to repair the concrete structures in Korea. However, questions has been raised for protective effect of the corrosion inhibitors which applied in steel reinforced concrete structures. Therefore, we investigated the influence of type and amount of corrosion inhibitors through the tests immersing in salty water. In addition, we developed the corrosion inhibitive agent treating to surface of concrete structures for improving resistance to penetration and corrosion of the steel reinforcement.

A Study on the Performance Development of Sewage Concrete by Application of Antibiotics (항균제 도포에 의한 하수시설 콘크리트의 성능향상에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Khil, Bae-Su;Cho, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.371-378
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, physical properties of concrete covered with antibiotics were investigated. As a results of the study, it was proved that the antimicrobial performance of antibiotics was available. Also compressive strength and bond strength of concrete didn't closely connected with antibiotics, and resistance to abrasion, water absorption, air permeability, carbonation, salt damage and chemical attack of concrete was improved remarkably by covering with it.

Evaluation of Diffusion on Cement Mortar and Durability of Concrete Specimen Using Inorganic Coating Material and Surface Treatment System (무기질 도료 및 표면처리 시스템을 적용한 시멘트 모르타르와 콘크리트의 내구성 평가)

  • Kim, In-Seob;Lee, Jong-Kyu;Chu, Yong-Sik;Kim, Tae-Hyun;Shim, Kwang-Bo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. However, such high durable structure is often attacked by some environmental condition such as chloride diffusion, carbonation and so on. In order to prevent the deterioration behaviors of concrete structures. We estimated durability of concrete when used surface treatment system and coatings by new type inorganic coating materials. Base on the results of chloride ion's diffusion test, the coated cement mortar had smaller transmitted quantity.

Development for Penetrative Performance Improving Agent to In Prevent Deterioration of Concrete Structures (콘크리트 구조물의 내구성능 저하를 방지하는 침투형 성능개선제 개발)

  • Ryu Gum-Sung;Koh Kyoung-Taek;Kim Sung-Wook;Kim Do-Gyeum
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.489-498
    • /
    • 2005
  • Recently, the deterioration of concrete structures have been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the deterioration of concretes have been taken. Among them, it has been often used that surface treatment which cut off the deterioration factors of durability by protecting the surface of concrete. The water proof and repair materials for concrete mainly use organic materials such as epoxy, these materials excel in intial bonding force and resistance to chemical agents. But they cause difference in the modulus of elasticity and the rate of shrinkage and expansion of concrete, and thus result in such problems as scaling and spatting in the progress of time. Therefore in this study it develop the performance Improving agent of concrete surface that can block a deterioration cause such as $CO_2$ gas, chloride ion and water from the outside and enhance waterproofing ability by reinforcing the concrete surface when applying it to concrete structures.

Evaluation on the Performance of Surface Performance Improving Agent for the Deterioration Prevention of Concrete Structures (콘크리트 구조물의 열화방지를 위한 표면 성능 개선제의 성능 평가)

  • Ryu, Gum-Sung;Koh, Kyoung-Taek;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.177-186
    • /
    • 2005
  • The latest concrete structure has showed that the deterioration of durability has been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the concrete which has deteriorated durability have been taken. Among them, it has been often used that surface treatment which cuts off the deterioration factors of durability by protecting the surface of concrete. However, troubles such as fracture and rupture in the repair layer have been reported as time goes by due to the difference between the organic repair material like epoxy and concrete properties. Researchers have been developing the repair material which can cut off the deterioration factors of durability such as $CO_2$ gas, chloride ion and water by making the formation of concrete elaborate through the reaction with calcium ion when the surface improving agent is coated on the concrete. The main ingredient of that is inorganic substance which is the same as the concrete property. This study was evaluated the surface improving agent for permeability, watertightness, air-permeability, chemical resistance and elution resistance. As a result, it has been reported that the surface improving agent improves watertightness and air-permeability by penetration more than 10mm within concrete. Therefore, it is concluded that the surface improving agent developed in this research prevents deterioration of concrete durability when it is coated on the concrete structure.