• Title/Summary/Keyword: 염풍화

Search Result 69, Processing Time 0.027 seconds

Hydrogeochemical Characteristics of Groundwater on Well Depth Variation in the Heunghae Area, Korea (심도 변화에 따른 흥해지역 지하수의 수리 지화학적 특성)

  • Yun Uk;Cho Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.391-405
    • /
    • 2005
  • Chemical and isotopic analysis for stream water, shallow groundwater, intermediate groundwater and deep groundwater was carried out to grasp hydrogeochemical characteristics of groundwater in the Heunghae area, Pohang city. Water type of stream water and shallow groundwaters is typified as Ca-Cl type, intermediate groundwater is $Na-HCO_3$, and deep groundwater is prominent in Wa-Cl type. $HCO_3^-\;and\;SiO_2$ in shallow groundwater are originated from weathering of silicate minerals, whereas those of deep groundwaters are resulted from weathering of carbonate minerals. Ca and Mg ions in both shallow and deep groundwaters are resulted from weathering of calcite and dolomite. $SO_4^{2-}$ in shallow groundwater is originated mainly from pyrite oxidation. As well depth increases, pH and TDS increase, but Eh and DO decrease. Alkali metal contents(K, Na, Li) increases as well depth increases, but alkali earth metal(Mg, Ca) and hi concentrations increase as well depth decreases. Anions, halogen elements(F, Cl, Br), and $HCO_3$ contents increase as well depth increases. The average stable isotope value of the groundwater of each depth is as follows; deep groundwater: ${\delta}^{18}O=-10.1\%o,\;{\delta}D=-65.8\%_{\circ}$, intermediate groundwater: ${\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ}$, shallow groungwater : ${\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ}$, surface water : ${\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ}$ respectively.

Material Characteristics, Damage Evaluation and Weathering Mechanism on the Yi Chungmugong Tombstone of Chunglyolsa in Namhae, Korea (남해 충렬사 이충무공묘비의 재질특성, 손상도 평가 및 풍화과정 해석)

  • Cho, Ji Hyun;Lee, Chan Hee;Jo, Young Hoon;Kim, Sun Duk
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.2
    • /
    • pp.100-113
    • /
    • 2012
  • The tombstone of Yi Chungmugong in the Joseon Dynasty located Namhae, Gyeongnam is consisted of sandstone. The Bisin and Bijwa of the tombstone have narrow range of magnetic value less than $0.2({\times}10^{-3}SI\;unit)$ and the Isu covered pigment on surface also has same magnetic susceptibility range. Therefore, the composition of all tombstone have similar lithological characteristics. The side of the tombstone appeared fine-grained sandstone to coarse-grained graywacke boundary clearly and back of tombstone observed lamination. Especially deterioration type is concentrated in front and back of the tombstone blistering (8.2% of back), scaling (10.2% of back), granular disintegration (28.1% of back) and discoloration (53.5% of front). Results of contaminants analysis, the front of the Bisin separated in 3 type of surface - granular disintegration-scaling. Among this area, surface detected Ca, S and Cl in high density, but these contaminants elements have more lower detect density from surface to granular disintegration. By contrast, on scaling area, these components are almost not detected, but Fe, K consisted of rock forming elements are detected. It is necessary to conservation and treatment of Yi Chungmugong tombstone in continuously, and salt cleaning on surface also needed. So through activity of conservation and restoration, epigraph preserved for their worth.

Petrological Characteristics and Deterioration Aspect of the Pohang Chilpori and Shinheungri Petroglyphs (포항 칠포리 I지구와 신흥리 암각화의 암석학적 특징과 훼손양상 분석)

  • Lee, Sang-Hun;Choi, Gi-Ju
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.347-361
    • /
    • 2009
  • The Pohang Chilpori is the area with abundant petroglyphs in Korea. The form of the shield, female sex organs, and yut board on the outcrops or float rocks which are composed of the rhyolitic rock are engraved on Chilpori and Shinheungri Petroglyphs. The rhyolitic rock is composed of the phenocryst and groundmass with quartz and feldspar. The rock surface shows mostly yellowish brown color and the rock surface is very irregular by serious weathering, and illite and kaolinite, a kind of the clay minerals, are produced. Deterioration aspects are mainly of surface exfoliation, grain peel-off, damages, scribbling. Chilpori Petroglyph (1) plane has been eroded by running water, in (2) plane has been abrased is on the rock surface, in (3) plane shows surface exfoliation and the various part of the rock surface in plane (4) has become the soil. The corrasion and black phenomenon of the Shinheungri Petroglyph (1) plane was formed by running water, and surface exfoliation and scribbling in plane (2) is serious. Deterioration factors are geomorphologic states, plants, rock of weak to weathering, and artificial influence such as a scribbling and a forest fire. For conservation of the these petroglyphs, study for rock surface conservation and the arrangement of around petroglyphs and construction of water wall are necessary.

  • PDF

Field Tests for the Application of Bottom Ash and Shred Tire as Fill Materials (석탄회 및 폐타이어의 성토재로의 적용성 검토를 위한 현장시험)

  • Lee, Sungjin;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.29-37
    • /
    • 2013
  • In this study, we constructed the test embankment with four kinds of sections(2 kinds of bottom ash; tire shred-bottom ash mixture, weathered soil) in field and had been monitoring the behaviour of the test embankment and change of ground water quality for 1 year. In the geotechnical aspects, there was no relative difference of deformation in 4 test materials section and we could not see the possibility of the strength-reduction of coal ash materials by freezing inside of the embankment. In addition, no settlement was observed in the test sections because the base soil of the test sections was rigid enough that no consolidation was occurred. In the examination of water quality, all of the heavy metals and negative ions were detected below the drinking water standards except for sulfate($SO_4^{2-}$). In the beginning of measurement, higher concentrations of sulfate from 4 test sections were detected than drinking water standard for 20 days after beginning of the test but the concentrations decreased below the drinking water standard after 50 days after the tests.

Characteristics of surface pollutants on stone materials and its cleaning measures in Gyeongju Soekbinggo (경주석빙고 구성석재에 형성된 표면오염물의 특징과 그 제거방안)

  • Do, Jinyoung
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2005.03a
    • /
    • pp.71-88
    • /
    • 2005
  • With biological organism brown pollutants layers are thickly formed on inner stone materials in Gyeongjuseokbinggo(Ice storage in Gyeongju). Some simples were taken from this layer and its chemical composition, mineral composition, salt and microstructures were analyzed. This study shows that the pollutants layer can be removed easily, because it attached softly in stone surface. But because of its serious weathering state the stone surface also can be removed during the removing process. The origins of brown layer are assumed to be the soil in the mound over the Seokbinggo and the coarse sandy soil in the entrance. For the preservation of the Seokbinggo Waterproof and replacement of the coarse sandy soil should take precedence over the remove works. Subsequently moistureproof works should be enforced.

  • PDF

An Overview of Geoenvironmental Implications of Mineral Deposits in Korea (한반도 광상 성인유형에 따른 환경 특성)

  • 최선규;박상준;이평구;김창성
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.1-19
    • /
    • 2004
  • Metallic deposits in Korea have a variety of genetic types such as hydrothermal veins, skarns, hydrothermal replacement and alaskite deposits and so on. Geological, mineralogical and geochemical features including host rock, wall-rock alteration, ore and gangue mineralogy, mineral texture and secondary mineralogy related to weathering process control the environmental signatures of mining areas. The environmental signatures of metallic deposits closed from early 1970s to late 1990s in Korea show complicate geochemistry and mineralogy due to step weathering of primary and secondary minerals such as oxidation-precipitation-remobilization. The potentiality of low pH and high heavy metal Concentration s from acid mine drainage is great in base-metal deposits associated with polymetallic mineralization, breccia-pipe type and Cretaceous hydrothermal Au veins with the amount of pyrite whereas skam, hydrothermal replacement, hydrothermal Cu and Au-Ag vein deposits are in low contamination possibility. The geoenvironmental models reflecting the various geologic features closely relate to disuibution of sulfides and carbonates and their ratios and finally effect on characteristics of environmental signatures such as heavy metal species and their concentrations in acid mine drainage.

Characteristics of Nitrate Contamination of Groundwater - Case Study of Ogcheon Area - (지하수의 질산염 오염 특성 - 옥천지역 사례 연구 -)

  • Park, Ho-Rim;Kim, Myeong-Kyun;Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.87-98
    • /
    • 2015
  • Geochemical characteristics, water quality, $NO_3{^-}$ contamination and the origin of $NO_3{^-}$ were analyzed for the groundwater located at Ogcheon, Korea. The water qualities were weakly acidic to weakly alkalic and redox potentials indicated reduction condition. Compared to granitic rocks, metamorphic sedimentary rocks with intercalations of limestones and dolomites tended to be more effectively dissolved, resulting in higher pH and higher concentrations of dissolved ingredients. Contamination of heavy metals was not revealed. Geochemical reactions of carbonate rocks and influxes of artificial contamination ingredients seemed to simultaneously determine the geochemical characteristics and water qualities in the study area. From the results of ${\delta}^{15}N$ isotope analysis, the origin of $NO_3{^-}$ was estimated to be influenced dominantly by agricultural activities and human feces and urine.

Characterization of Arsenic Immobilization in the Myungbong Mine Tailing (명봉광산의 광미 내 비소의 고정화 특성 연구)

  • Lee, Woo-Chun;Jeong, Jong-Ok;Kim, Ju-Yong;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • The Myoungbong mine located in Boseong-gun, Jellanamdo consists of Au-Ag bearing quartz veins which filled the fissures of Bulguksa granitic rocks of Cretaceous. The tailings obtained from the Myungbong mine were used to investigate the effects of various processes, such as oxidation of primary sulfides and formation(alteration) of secondary and/or tertiary minerals, on arsenic immobilization in tailings. This study was conducted via both mineralogical and chemical methods. Mineralogical methods used included gravity and magnetic separation, ultrasonic cleaning, and instrumental analyses(X-ray diffractometry, energy-dispersive spectroscopy, and electron probe microanalyzer) and aqua regia extraction technique for soils was applied to determine the elemental concentrations in the tailings. Iron (oxy)hydroxides formed as a result of oxidation of tailings were identified as three specific forms. The first form filled in rims and fissures of primary pyrites. The second one precipitated and coated the surfaces of gangue minerals and the final form was altered into yukonites. Initially, large amounts of acid-generating minerals, such as pyrite and arsenopyrite, might make the rapid progress of oxidation reactions, and lots of secondary minerals including iron (oxy)hydroxides and scorodite were formed. The rate of pH decrease in tailings diminished, in addition, as the exposure time of tailings to oxidation environments was prolonged and the acid-generating minerals were depleted. Rather, it is speculated that the pH of tailings increased, as the contribution of pH neutralization reactions by calcite contained in surrounding parental rocks became larger. The stability of secondary minerals, such as scorodite, were deteriorated due to the increase in pH, and finally arsenic might be leached out. Subsequently, calcimn and arsenic ions dissociated from calcites and scorodites were locally concentrated, and yukonite could be grown tertiarily. It is confirmed that this tertiary yukonite which is one of arsenate minerals and contains arsenic in high level plays a crucial role in immobilizing arsenic in tailings. In addition to immobilization of arsenic in yukonites, the results indicate that a huge amount of iron (oxy)hydroxides formed by weathering of pyrite which is one of typical primary minerals in tailings can strongly control arsenic behavior as well. Consequently, this study elucidates that through a sequence of various processes, arsenic which was leached out as a result of weathering of primary minerals, such as arsenopyrite, and/or redissolved from secondary minerals, such as scorodite, might be immobilized by various sorption reactions including adsorption, coprecipiation, and absorption.

Natural Baseline Groundwater Quality in Shingwang-myeon and Heunghae-eup, Pohang, Korea (포항시 신광면 및 흥해읍 일대 지하수의 배경수질 연구)

  • Lee, Hyun A;Lee, Hyunjoo;Kwon, Eunhye;Park, Jonghoon;Woo, Nam C.
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.469-483
    • /
    • 2020
  • The results of long-term groundwater level and quality monitoring can be used not only as the basic data for evaluating the impact of various disasters including climate change and establishing responses, but also as key data for predicting and managing geological disasters such as earthquakes. Some countries use groundwater level and quality monitoring for researches to predict earthquakes and to assess the impacts of the earthquake disaster. However, a few cases in Korea report on individual groundwater quality factors (i.e., dissolved ions) observed before and after the earthquakes, being different from other countries. To establish the abnormality criteria for groundwater quality in Pohang, groundwater samples were collected and analyzed five times from 14 agricultural or private wells existing in Shingwang-myeon and Heunghae-eup. As a result of the analysis, it was found that Ca2+ was the dominant cation in Shingwang-myeon, while Na+ was the dominant cation in Heunghae-eup. The elevated NO3- concentration in Shingwang-myeon is contributed to the agricultural activity in the area. A high concentration of Fe was detected in a well on Heunghae-eup; the concentration exceeded the drinking water standard by nearly 100 times. Relatively higher dissolved ions were observed in the groundwater of Heunghae-eup, and it is considered as the result of the flow velocity difference and water-rock reaction accompanying the difference in bedrock and sediment characteristics. The groundwater of Shingwang-myeon appeared to be most affected by the weathering of granite and silicates, while that of Heunghae-eup was mainly affected by the weathering of silicates and carbonate. The background concentrations (baselines) of groundwater Shingwang-myeon and Heunghae-eup was identified through the survey; however, the continuous monitoring is required to monitor the possible changes and the repeatability of seasonal variation.

Compression Characteristics of Jeju Island Beach Sands (제주 해안지역 모래의 압축 특성)

  • Nam, Jung-Man;Cho, Sung-Hwan;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.103-114
    • /
    • 2007
  • Sands distributed in Jeju island's coastal areas, Korea, can be classified as silicate sand derived from volcanic rock, carbonate sand derived from shells, and mixed sands containing both silicate and carbonate sands. These three types of sands typically exist in Jeju coastal areas. Samples of silicate, carbonate and mixed sands were obtained from Samyang beach, Gimnyeong beach, and Jeju harbor area, respectively. Compression tests were conducted to assess the compression characteristics of these sands. As a result of these tests, each sand showed different behaviors. For Samyang beach sand, it appeared that initial compression is a larger than the other two sands. For Cimnyeong and Jeju harbor sands, however, the additional compression occurred after initial compression. This could result from the crushing, shattering, and rearrangement of sand particles. In addition, settlement behavior of Jeju harbor ground according to the construction stages was analyzed using the measured data. It showed that in addition to the initial elastic compression, a considerable additional compression occurred with time. The settlements of Jeju harbor ground were predicted by using the elastic settlement calculation methods (empirical methods) and the compression test method. The empirical methods, which did not consider the crushing, shattering, and rearrangement of particles could show smaller result than that occurring actually.