• Title/Summary/Keyword: 염소 소독부산물

Search Result 65, Processing Time 0.024 seconds

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

Variation of Natural Organic Matter Characteristics through Water Treatment Processes (정수공정별 천연유기물질의 특성 변화)

  • Hwang, Jeong-Eun;Kang, Lim-Seok;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1253-1261
    • /
    • 2000
  • Natural organic matter (NOM) which occurs ubiquitously in both surface and ground waters, consists of both humic (i.e., humic and fulvic acids) and nonhumic components. NOM in general as well as certain constituents are problematic in water treatment. From a regulatory perspective, concerns focus upon the role of NOM constituents as disinfection byproduct (DBP) precursors. The fractionation of NOM through water treatment processes can provide insight into treatment process selection and applicability. Problematic NOM fractions can be targeted for removal or transformation. Significant source-related differences in NOM were observed among various source waters. This study found that bulk Dissolved Organic Carbon (DOC) concentration was hardly removed by oxidation process. Oxidation transformed high Molecular Weight (MW) hydrophobic fraction into low MW hydrophilic fraction. Ozone reduced s-pecific Ultraviolet Absorbance (SUVA) value more than chlorine. High MW hydrophobic fraction was effectively removed by coagulation process. About 50% of Trihalomethane Formation Potential (THMFP) was removed by coagulation process.

  • PDF

A Study on Haloacetic Acids Formation Potentials by Chlorination in Drinking Water (상수의 염소처리시 생성되는 소독부산물 중 Haloacetic acid류의 생성능에 관한 연구 - 일부 상수원수를 대상으로 -)

  • Chung, Yong;Shin, Dong-Chun;Lim, Young-Wook;Kim, Jun-Sung;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.23-29
    • /
    • 1997
  • The main reason of applying chlorination is to sterilize microbes existing in the drinking water treatment. But chlorination could lead to the formation of disinfection by-products (DBPs) by the reaction of free chlorine with humic substance in the water. Especially the DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloketones (HKs) exist in the tap water. The US environmental protection agency (US EPA) defines that trihalomethanes, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile among DBPs are probable/possible human carcinogens. US EPA suggests maximum contaminant levels (MCLs) for THMs (80$\mu$g/L) and HAAs (60$\mu$g/L) in drinking water. In Korea, THMs in drinking water has been surveyed but DBPs in general has not been studied in drinking water practically. Therefore only THMs have been regulating as criteria compounds since 1990 but neither HAAs nor HANs. Researches on HAAs are yet to be found. HAA formation potentials(HAAFPs) have not been practiced. HAAs depends on the characteristics of water sources by chlorination. In this study, HAAFPs from three distinct sources were investigated by laboratory chlorination experiments. This study was performed to measure the level of HAAs in drinking water in Seoul area. At April 1996, after collecting the raw waters from the three sites with the different properties, the water samples were chlorinated at various conditions(pH 5.5, pH 7.0 and without pH adjustment) in the state of raw water to have 0. 5mg/L of residual chlorine concentration. And the raw water, treated water, and tap water of water treatment were collected to measure the HAAs concentration. The quantitative analysis of HAAs was conducted by US EPA methods.

  • PDF

Characteristics of Formation of Chlorination Disinfection By-Products in Extracellular Organic Matter of Various Algal Species (다양한 조류종들의 세포외 유기물질에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Park, Hong-Ki;Hwang, Young-Do;Jung, Jong-Moon;Kim, Sang-Goo
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.541-547
    • /
    • 2015
  • Formation of disinfection by-products (DBPs) including trihalomethans (THMs) and haloacetic acids (HAAs) from chlorination of six different species (Chlorella vulgaris, Scenedesmus sp., Anabaena cylindrical, Microcystis aeruginosa, Asterionella formosa and Aulacoseira sp.) of algal extracellular organic matter (EOM). The EOM characteristics evaluation of six algal species reaching at the stationary phase in the growth curve showed most of its SUVA254 showed below 1 and this means hydrophilic organic matter is much higher than hydrophobic organic matter. Chloroform formation potential (CFFP), dichloroacetic acid formation potential (DCAAFP) and trichloroacetic acid formation potential (TCAAFP) were mainly composed of THMFP and HAAFP in the EOM of various algal species. In the case of THMFP/DOC and HAAFP/DOC values, EOM of blue-green algae has appeared highest and EOM of green algae and diatom in order. THMFP/DOC was higher than HAAFP/DOC in EOM of blue-green algae. In comparison of formation potential by unit DOC composed of HAAFP in algal species EOM, DCAAFP/DOC was 1.5 times to 7.5 time higher than TCAAFP/DOC in the EOM of blue-green algae, while DCAAFP/DOC was found to be relatively high compared to TCAAFP/DOC in the EOM of green algae and diatom.

Effect of Chlorination on Disinfection Byproducts Production and Release of Microcystins from Bloom-forming Algae (녹조현상 원인조류들의 염소처리에 의한 소독부산물 생성 및 microcystins 유출)

  • Park, Hae-Kyung;Seo, Yong-Chan;Cho, Il-Hyung;Park, Byung-Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.513-520
    • /
    • 2006
  • The effect of chlorination on disinfection byproducts (DBPs) production from bloom-forming freshwater algae including 7 strains of cyanobacteria and 6 strains of diatoms was investigated. The release and degradation of hepatotoxin (microcystins) by the chlorination on Microcystis under differential condition of the chlorination time and dose were also investigated. The disinfection byproducts formation potentials (DBPFP) of cyanobacterial species and diatoms were ranged from 0.017 to $0.070{\mu}mol\;DBPs/mg$ C and from 0.129 to $0.708{\mu}mol\;DBPs/mg$ C respectively. Among three major groups of DBPs, haloacetonitrils (HANs) was major product in most test strains except Aphanizomenon sp. and Oscillatoria sp. Haloacetic acids (HAAs) was less than 5 % of total DBPs. Chloroform and dichloroacetonitril (DCAN) were dominant compounds in trihalomethanes (THMs) and HANs respectively. After 4 hours chlorination of toxic Microcystis aeruginosa under the dose range of 0.5 to $10mg\;Cl_2/L$, the concentration of intracellular microcystins decreased, but dissolved dissolved microcystins concentration increased with the treatment of more than $3mg\;Cl_2/L$. However the total amount of microcystins was almost constant even at $10mg\;Cl_2/L$ of chlorination. To conclude, our results indicate that the chlorination causes algal cell lysis and release of intracellular microcystins in the intact form to surrounding waters.

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.

Removal of Dissolved Organic Nitrogen from Surface Water and Reclaimed Water by Coagulation (지표수 및 재이용수내 용존 유기질소의 응집처리)

  • Lee, Wontae;Choi, June-Seok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.729-734
    • /
    • 2012
  • During chlorination processes dissolved organic nitrogen (DON) can form toxic nitrogenous disinfection byproducts and organic chloramines which have little or no bactericidal activity. DON needs to be removed before chlorination processes to reduce the formation of those products. This study investigated the removal of DON from surface water and reclaimed water by coagulation with aluminum sulfate (alum) and a cationic polymer (polyDADMAC). Removal characteristics of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$) were compared with that of DON. Coagulation with alum removed DON, DOC, and $UVA_{254}$ with similar trends, but the removal of $UVA_{254}$ was highest. A dual coagulation strategy of alum and cationic polymer improved the removal of DON. Coagulation with cationic polymer alone was not effective due to its narrow range of charge neutralization. DON in reclaimed water was easier to remove than that in surface water, and higher molecular weight fraction (>10,000 Da) of DON was preferentially removed.

Characterization of Disinfection By-Products by Chlamydomonas pulsatilla (녹조류(Chlamydomonas pulsatilla)에 의한 염소소독부산물 생성과 그 특성)

  • Kum, Heejung;Kim, Junsung;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.535-540
    • /
    • 2005
  • This study was conducted to evaluate the chlorinated disinfection by-products formation potential (DBPFP) produced from the cell and extracellular product (ECP) of Chlamydomonas pulsatilla after chlorination. Reaction yields of DBPs produced by C. pulsatilla of ECP and the cell were $0.007{\mu}mol/mg{\cdot}C$ and $0.808{\mu}mol/mg{\cdot}C$ respectively, Also, SUVA values of ECP and the cell were measured as $0.313L/mg{\cdot}m$ and $1.052L/mg{\cdot}m$ respectively, The DOC of cell was found to be lower than that of ECP, while the SUVA value and reaction yields for the cell were higher than those of ECP. For ECP, most of the DBPFP was composed of trihalomethanes (THM; 47.3%) and haloacetonitriles (HAN; 38,83%). THM and HAN were the major DBPFP produced by the cell. Chloroform was found to be the major THM compound; 98.3% for ECP and 99.98% for the cell. Dichloroacetic acid (DCAA) and dichloroacetonitrile (DCAN) were identified as the major haloacetic acid (HAA) and HAN compounds formed by ECP and the cell as a precursor, respectively. As the chlorine dose was increased, concentrations of DOC, THMs, and HANs were increased. However, the chlorine dose decreased the concentration of chlorophyll-a.

Removal of Trihalomethanes from Tap Water using Activated Carbon Fiber (활성탄소섬유를 사용한 수돗물 내 트리할로메탄의 제거)

  • Yoo, Hwa In;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Activated carbon fiber (ACF) was used to remove four kinds of trihalomethanes(THMs) from tap water which were remained as by-products during the chlorination of water. Adsorption capacity was investigated as a function of THMs concentration and solution temperature, and adsorption mechanism was studied in relating to the surface characteristics of ACF. All the four kinds of THMs were rapidly adsorbed on the surface of ACF by physical adsorption due to the enormous surface micropores and chemical adsorption due to the hydrogen bonds, showing a Langmuir type adsorption isotherm. Langmuir type is especially profitable for the adsorption of low level adsorptives. ACF was very effective for the removal of THMs from tap water because the THMs concentration is below $30{\mu}g/L$ in tap water. The adsorption amount of THMs on ACF increased in order of the number of brom atom; chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The adsorption capacity increased as increasing the number of brom atom due to the decrease of polarity in solution. The adsorption capacity of THMs on ACF can be enhanced by proper surface treatment of ACF.

Characteristics of Chlorination Byproducts and Aldehyde Occurrence in Bottled Tap Water (수돗물 병입수 중 염소소독부산물 및 aldehyde의 발생 특성)

  • Lee, Youn-Hee;Park, Ju-Hyun;Kim, Hyun-Koo;Ahn, Kyung-Hee;Kim, Tae-Seung;Kim, Dong-Hoon;Kwon, Oh-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.754-761
    • /
    • 2012
  • Several drinking water treatment plants (DWTPs) produce the bottled tap waters (BTWs) as pilot production and provide them for noncommercial use. In 2008, acetaldehyde and chloral hydrate were detected in some BTWs and the public worry over the safety of the water. In this study, the BTWs produced from 7 DWTPs were tested for 13 chemicals including disinfection byproducts (DBPs). The level of four trihalomethanes (THMs) were increased up to 15 days. The average concentration of them was 0.0075 mg/L at the time of bottling and it was increased to 0.0214 mg/L after 15 days. The average acetaldehyde concentration was 0.0406 mg/L at the time of bottling but it was went up to 0.2251 mg/L after 11 days and then decreased. Although the initial concentrations of DBPs were below the drinking water standard, we also traced them at different storage conditions. Temperature affected the formations of THMs and acetaldehyde concentrations significantly. While the average concentration of THMs ranged from 0.0113 to 0.0182 mg/L at $25^{\circ}C$, it was increased to 0.0132 ~ 0.0256 mg/L at $50^{\circ}C$. In case of acetaldehyde, concentration ranged from 0.0901 to 0.2251 mg/L at $25^{\circ}C$, it was increased to 0.3394 ~ 1.0591 mg/L at $50^{\circ}C$. Throughout the tests with 7 BTWs samples, none of the chemicals was exceeded the drinking water standard of Korea. Therefore, it is recommended to avoid the exposure of BTWs to sunlight or high temperature during distribution and storage.