• Title/Summary/Keyword: 염소처리

Search Result 449, Processing Time 0.024 seconds

Characteristics of Wastewater from the Pulp.Paper Industry and its Biological Treatment Technologies (펄프.제지산업(製紙産業) 폐수(廢水)의 특성(特性)과 생물학적(生物學的) 처리기술(處理技術))

  • Abn, Ji-Whan;Lim, Mi-Hee
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.16-29
    • /
    • 2009
  • This paper describes characteristics of pollutants in wastewater from the pulp and paper industry and biological technologies for the wastewater treatment. The wastewater from the pulp and paper industry contains high concentrations of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) and shows high toxicity and strong black-brown color. In particular, organic chlorinated compounds such as dioxins and furans may be formed by the chlorination of lignin in wood chips. Thus the pulp and paper industry is recently trending toward total chlorine-free (TCF) bleaching processes. All biological technologies for pulp and paper wastewater treatment are based on the contact between wastewater and bacteria, which feed on organic materials in the wastewater, thus they reduce BOD concentration in it. Both aerobic and anaerobic treatments were found to be effective for the wastewater treatment. Furthermore, advanced technologies such as fungal application and combined biological-filtration process have been also introduced to the wastewater treatment field. These technologies would be useful for water recycling to reduce water consumption throughout pulp and paper making process.

Effect of inhibition on Browning and Microbial Growth of Minimally Processed Lettuce (최소가공 처리에 의한 양상추의 갈변 및 미생물 증식억제 효과)

  • Cha Hwan-Soo;Kim Soon-1m;Kim Byeong-Sam;Kim Sang-Hee;Park Seon-Ju;Cho Han-Sun;chd Hye-Yeon
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.331-335
    • /
    • 2004
  • This study was carried out to improve quality of minimally processed lettuce with various treatments. The treatments for preventing enzymatic browning were using different chemical immersion solutions and controlling microbial growth were using chlorine, electrolyzed water, and organic acid. The solution with ascorbic acid 1$\%$ and citric acid 1 $\%$ showed a positive effect on antibrowning of minimally processed lettuce. In the inhibition of microorganisms growth, 200 ppm NaCIO solution was more effective than fermented pollen solution and Na-dichloroisocyanurate solution. In electrolyzed water system, no-diaphragm system showed inhibitory effect of microorganisms growth. Also, total microorganisms count of minimally processed lettuce with ascorbic acid and citric acid solution was lower by about 4 log cycle after 4 days storage at l0$^{\circ}C$.

Study on Destruction of Chlorinated Organic Compounds in a Two Stage Molten Carbonate Oxidation System (2단 용융탄산염산화시스템에서 염소유기화합물 분해에 관한 연구)

  • Eun, Hee-Chul;Yang, Hee-Chul;Cho, Yung-Zun;Lee, Han-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1148-1152
    • /
    • 2008
  • Molten carbonate oxidation (MCO) is one of the promising alternative technologies for the treatment of the chlorinated organic compounds because it is capable of trapping chlorine during a destruction of them. In this study, destructions of chlorinated organic compounds ($C_6H_5Cl$, $C_2HCl_3$ and $CCl_4$) and an insulated oil containing PCBs were performed by using the two stage molten carbonate oxidation system. MCO reactor temperature largely affected the destruction of the chlorinated organic compounds. Destruction of the chlorinated organics very efficient in the primary MCO reactor however a significant amount of CO was emitted from the MCO system. This CO emission was gradually decreased by an increase in the primary reactor temperature and oxidizing air feed rate. The HCl emission from the MCO system was below 7 ppm regardless of tested conditions. The chlorine collection efficiencies were in the range of 99.95-99.99%. The destruction of PCBs in the insulated oil was efficient at a temperature above $900^{\circ}C$ and overall destruction efficiency of them was determined as over 99.9999%.

Decomposition of Microcystis sp. Cell and Formation of Chlorination Disinfection By-Products (Microcystis sp. Cell의 부패와 염소 소독부산물 생성)

  • Son, Hee-Jong;Yeom, Hoon-Sik;Jung, Jong-Mun;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.351-358
    • /
    • 2012
  • Formation of disinfection by-products (DBPs) including trihalomethans (THM), haloacetic acid (HAA) and haloacetonitriles (HAN) from chlorination of extracellular organic matter (EOM) and cells + intracellular organic matter (IOM) of Microcystis sp., a blue-green algae, during decomposed period was investigated. Microcystis sp. cells + IOM and EOM of Microcystis sp. exhibited a high potential for DBP formation. HAAFP (formation potential) was higher than THMFP during decomposed period. In the variations of HAAFP species during decomposed period, the ratio of di-HAAFP species was gradually decreased and the ratio of tri-HAAFP species was gradually increased in the case of EOM during decomposed period, while the opposite result was in the case of cells + IOM during decomposed period. In the variations of HANFP species during decomposed period, the ratio of di-HANFP species was much higher than the ratio of tri-HAAFP species.

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Quality Enhancement of Kimchi by Pre-Treatment with Slightly Acidic Electrolyzed Water and Mild Heating during Storage (미산성 차아염소산수와 미가열 병용 처리를 통한 원료 전처리 및 김치 저장 중 품질 확보)

  • Park, Joong-Hyun;Kim, Ha-Na;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.269-276
    • /
    • 2016
  • This study was conducted to determine the inactivation effects of slightly acidic electrolyzed water (SAEW) on microorganisms attached to salted Chinese cabbage and food materials of kimchi, such as slice radish and green onion. In addition, changes in microbial and physicochemical quality of manufactured kimchi during storage at $4^{\circ}C$ for 4 weeks were investigated. Compared to the untreated control with tap water, total bacterial counts (TBC) of Chinese cabbage, slice radish, and green onion were reduced by 1.75, 1.68, and 1.03 log CFU/g at dipping times of 20 min, 5 min, and 10 min, respectively, upon treatment with 30 ppm SAEW at $40^{\circ}C$. Effect of microbial inhibition was higher in salted Chinese cabbage brined in 10% salt (w/v) of 30 pm SAEW at $40^{\circ}C$ than in untreated control with tap water, as indicated by 1.00 log CFU/g reduction. TBC of kimchi manufactured with materials treated with 30 ppm SAEW at $40^{\circ}C$ was not significantly affected compared to untreated control, although coliforms were remarkably reduced compared to the untreated control. At the beginning of storage (1 weeks), TBC and lactic acid bacteria (LAB) counts increased by approximately 9 and 7.66~8.18 log CFU/g, respectively, and coliforms were completely eliminated. The pH and acidity of kimchi at 2 weeks were 4.34~4.49 and 0.55~0.66%, respectively, and then slowly decreased. The texture (firmness) of kimchi decreased with storage time, but the difference was not significant. This combined treatment might be considered as a potentially beneficial sanitizing method for improving the quality and safety of kimchi.

Effect of Chlorine Dioxide and Sodium Hypochlorite Treatment on the Reduction of Foodborne Pathogen in Korean Chive (영양부추에서 이산화염소와 차아염소산나트륨 처리의 식중독세균 저감화 효과)

  • Yun, Bohyun;Lee, Hyo-Sup;An, Hyun Mi;Kim, Won-Il;Kim, Hwang-Yong;Han, Sanghyun;Kim, Hyun-Ju;Ryu, Jae-Gee;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.154-162
    • /
    • 2017
  • The purpose of this study was to investigate the microbial reduction effect of chlorine dioxide and sodium hypochlorite in Korean chive. Korean chive inoculated with foodborne pathogens at the level of approximately 7~8 log CFU/g was treated with various concentration of chlorine dioxide (3, 4, 10, 25 and 100 ppm and sodium hypochlorite (100, 150 and 200 ppm) for 5, 10, 30 and 60 minutes. The treatment of 150 ppm sodium hypochlorite and 50 ppm chlorine dioxide for 30 min reduced the number of total bacteria in Korean chive up to 2.0 log CFU/g. Reduction of microbial levels was observed for all concentrations of sanitizers but their effectiveness did not correspond to their concentration. Due to the quality degradation, 50 ppm chlorine dioxide was not appropriate for Korean chive. Most effective reduction of microbial levels was observed when Korean chive were treated with 9 times more sanitizer in volume. For field application, the treatment of 150 ppm sodium hypochlorite showed 2.7 and 4.0 log CFU/g reductions for numbers of total bacteria and coliforms, respectively. Therefore, washing with sodium hypochlorite of a ratio of 1:9 (Korean chive : 150 ppm sodium hypochlorite (w/v)) for 30 minutes can reduce the number of foodborne pathogen in Korean chive.