• Title/Summary/Keyword: 염색폐수

Search Result 234, Processing Time 0.032 seconds

Treatment of dye wastewater by emulsion liquid membrane (에멀젼 액막을 이용한 염색 폐수의 처리)

  • 김재림;오준택;김종국;김우식
    • Membrane Journal
    • /
    • v.5 no.4
    • /
    • pp.129-136
    • /
    • 1995
  • This study is concerned with the treatment of dye wastewater by carrier meditated emulsion liquid membrane. Optimum conditions for the removal of anionic dye and cationic dye by the emulsion liquid membrane(ELM) containing Aliquat 336 or D2EHPA were obtained in the batch operation, an actual dye wastewater was tested under these conditions. Dye reagents used were Sirius Red(Direct dye), Reactofix Supra Blue(Reactive dye), and Apollo Blue(Basic dye). The experimental variables were surfactant(Span 80) and carrier(Aliquat 336 or D2EHPA) concentration in the membrane phase, the counter ion($Na_2SO_4$) concentration in the internal phase and the amount of emulsion. Extraction equilibrium arrived within 5 minutes after starting reaction and more than 95% of dye ion could be removed. The carrier concentration in the membrane phase was the most crucial for the removal efficiency, but other variables effected to the reaction time more than the removal efficiency. The dye wastewater was treated under the optimum conditions in two steps. The absorbance at 550nm of wastewater was decreased 0.53 to below 0.03 after 10 minutes treatment.

  • PDF

Unit Mass Estimation and Analysis from Fiber Dyeing and Finishing Facility Nearby Nakdong River Basin (낙동강수계에서 섬유염색 및 가공 업체에 대한 공정별 원단위산정 및 분석)

  • Gu, Jung-Eun;Nah, Dong-Hoon;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.765-774
    • /
    • 2009
  • Fiber Dyeing and Finishing facility has been recognized as an important pollution source due to its consumption of large volumes of water and chemicals. Unit mass discharge for the conventional water quality parameters such as flowrate, SS, $BOD_5,\;COD_{Mn},\;COD_{Cr}$, TN, TP were estimated. To represent the respective industries, three companies were carefully selected based on its manufacturing goods, flowrate and location at various unit operations and processes. More than 90% of decrease in unit mass estimation between influent and effluent of BOD was observed. But the values themselves were similar to those of Fiber Manufacturing facility due to the high loadings of organic matter. Biodegradability of influent was almost three times higher than that of effluent. Unit mass discharge estimations of unit process (estimated in this study) based on space, products and raw material were similar to those of composite process (estimated by National Institute of Environmental Research), while big difference was observed in the other factors. Unit mass discharge factors calculated in this study can be used as the reference for the estimation of water pollution loading costs in Nakdong river basin. For the effective water pollution control and management, it is essential to characterize the various types of water quality parameters from the effluents of individual industrial wastewater treatment plants.

Decolorization of Azo Dyeing Wastewater Using Underwater Dielectric Barrier Discharge Plasma (수중 유전체장벽방전 플라즈마를 이용한 아조 염색폐수 색도제거)

  • Jo, Jin Oh;Lee, Sang Baek;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.544-550
    • /
    • 2013
  • This work investigated the environmental application of an underwater dielectric barrier discharge plasma reactor consisting of a porous hydrophobic ceramic tube to the decolorization of an azo dyeing wastewater. The reactive species generated by the plasma are mostly short-lived, which also need to be transferred to the wastewater right after the formation. Moreover, the gas-liquid interfacial area should be as large as possible to increase the decolorization rate. The arrangement of the present wastewater treatment system capable of immediately dispersing the plasmatic gas as tiny bubbles makes it possible to effectively decolorize the dyeing wastewater alongside consuming less amount of electrical energy. The effect of discharge power, gas flow rate, dissolved anion and initial dye concentration on the decolorization was examined with dry air for the creation of plasma and amaranth as an azo dye. At a gas flow rate of $1.5Lmin^{-1}$, the good contact between the plasmatic gas and the wastewater was achieved, resulting in rapid decolorization. For an initial dye concentration of $40.2{\mu}molL^{-1}$ (volume : 0.8 L; discharge power : 3.37 W), it took about 25 min to attain a decolorization efficiency of above 99%. Besides, the decolorization rate increased with decreasing the initial dye concentration or increasing the discharge power. The presence of chlorine anion appeared to slightly enhance the decolorization rate, whereas the effect of dissolved nitrate anion was negligible.

A Review on Ceramic Based Membranes for Textile Wastewater Treatment (염색폐수의 처리를 위한 세라믹 분리막에 대한 고찰)

  • Kwak, Yeonsoo;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.100-108
    • /
    • 2022
  • Among various industries, the textile industry uses the largest amount of water for coloring textiles which leads to a large amount of wastewater containing various kinds of dye. There are various methods for the removal of dye such as flocculation, ozone treatment, adsorption, etc. But these processes are not much successful due to the issue of recycling which enhances the cost. Alternatively, the membrane separation process for the treatment of dye in wastewater is already documented as the best available technique. Polymeric membrane and ceramic membrane are two separate groups of separation membranes. Advantages of ceramic membranes include the ease of cleaning, long lifetime, good chemical and thermal resistance, and mechanical stability. Ceramic membranes can be prepared from various sources and natural materials like clay, zeolite, and fly ash are very cheap and easily available. In this review separation of wastewater is classified into mainly three groups: ultrafiltration (UF), microfiltration (MF), and nanofiltration (NF) process.

Semi-Industrial Scale Data (NF분리막에 의한 머어서폐수에서의 알칼리 회수 및 국내 실용화 방안 연구)

  • 손은종;최은경;김진우
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.354-359
    • /
    • 1998
  • 본 연구에서는 분획분자량이 RO막과 UF막 사이에 있는 NF막(Nanofiltration Membrane) 의 특성을 이용하여 앞서의 기초연구$^{1)}$ 를 바탕으로 현장적용을 위한 소현장규모의 실험을 수회 진행하여 실제로 NF막 공정기술의 현장실용화를 위해 검토되어야 할 사항 및 운전시간에 따른 막투과량 거동의 변화 및 온도의존성 등을 검토하였고, 이와 병행하여 염색공장, 염색공단조합, 폐알칼리 수거회사와의 면담을 통하여 머어서 공정 및 머어서 폐수 관련 현황을 조사하여 이를 토대로 분리막 공정의 경제성에 주요 역할을 하는 고농도 가성소다 폐수 수집을 위한 수세방법을 소개하였고 본 기술의 국내 실용화를 위한 문제점 파악 및 현 상황에서의 실용화 최적 방안을 제안하여 보았다.(중략)

  • PDF

염색가공 공정폐수에서 반응성 염료 분해 균주의 분리 및 배양 최적화

  • Sin, Jong-Cheol;Choe, Gwang-Geun;Jin, Jong-Hwa;Jeon, Hyeon-Hui;Kim, Sang-Yong;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.356-360
    • /
    • 2003
  • Hundreds of microbial species were isolated and collected from dye-processing wastewater. Among them three species (named as RA1, RA2, and YA1) showed excellent ability of dye degradation. Especially, YA1 species could remove 53% of dye in 24 hours. To find optimal growth conditions for the isolated species, further research is going on.

  • PDF