• Title/Summary/Keyword: 열-탄성계

Search Result 40, Processing Time 0.022 seconds

Topology Optimization of Actuator for Thermo-Elastic Systems (열-탄성계를 고려한 엑추에이터 위상 최적설계)

  • Lim, O-Kaung;Kim, Dae-Woo;Choi, Eun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.683-690
    • /
    • 2007
  • Topology optimization techniques have been developed as a very efficient design tool and utilized for design engineering processes in many industrial sections during the past decade. And topology optimization has become the focus into structural optimization design up to now. Recently, thermally actuated compliant mechanisms have a wide range of applications. In this research, the thermo-elastic problem is a coupled problem which has to consider heat transfer analysis and structural analysis. Hence, the thermo-elastic problem has to deal with heat transfer material properties and structural material properties at the same time. The numerical examples are presented. From the results, it was shown that in terms of the displacement after optimization. Moreover, this paper compared thermo-system, elastic-system with thermo-elastic system and was shown a good result of topology optimization while thermo-elastic system was used.

Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments (고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.711-718
    • /
    • 2011
  • The thermoelastic behavior of the porous carbon/phenolic composites is studied using the thermomechanical response model of chemically decomposing composites. The model includes thermal dependence of the porous composites, porosity in the pyrolysis process, pore pressure due to decomposing gases, and shrinkage. The poroelastic coefficients are calculated based on representative volume element model and finite element analysis. The internal stress distribution caused by pores and pore pressure, and the overall deformation are verified. The effects of the poroelastic coefficients on the thermoelastic behavior are examined through numerical experiments.

Detection of Laser Generated Ultrasonic Wave Using Michelson Interferometer (마이켈슨 간섭계를 이용한 레이저 여기 초음파의 검출)

  • Kim, Kyung-Cho;Yamawaki, Hisashi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • In this paper, ultrasonic wave in the thermoelastic regime was generated in a steel disk by illuminating a pulse laser (Q-switched Nd:YAG) on the surface of the sample and was detected on the other side by Michelson interferometer which was stabilized by feed back control. The experimentally detected displacement waveform of the ultrasonic wave showed good agreement with the theoretically expected one. Also it was shown that sound speeds of longitudinal and shear wave were similar to ones measured by pulse-echo method using a contact transducer. As an application of the noncontact ultrasonic measurement by using laser based ultrasonics, the sound speed in the sample was monitored while the sample was heated in a furnace, and the result showed that it decreased according to the increase of sample temperature.

  • PDF

Structural optimization and numerical analysis of multiphysics system (멀티 피직스 시스템 해석과 구조 최적 설계)

  • Yoon, Gil-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.157-160
    • /
    • 2009
  • 멀티 피직스 시스템은 구동을 수치적으로 해석하기 위하여 두 개 이상의 연성이 되어 있는 물리계를 고려해야하는 시스템을 일컫는다. 대표적인 예로 기계 분야에서 현재까지 많이 연구되어 왔던 열탄성(Thermal/Structure)과 유체/구조 연성(Fluid/Structure)시스템을 들 수 있다. 또한 현재 차세대 성장산업으로 많은 관심이 집중되고 있는 의료기기나 지능형 자동차와 로봇 등에서 사용되는 다양한 센서와 엑추에이터 등도 특별한 예로 들 수 있다. 특히, 한 개의 물리계 해석으로 시스템 해석이 가능한 기존의 일반적인 기계 시스템과는 달리 MEMS 등의 초소형 시스템은 시스템의 거동을 수치적으로 계산하기 위하여 여러 물리계의 연성을 고려해야 한다는 점에서 대표적인 다물리계 시스템의 예로 들 수 있다. 이렇게 우리생활에 밀접하게 쓰이고 있는 멀티 피직스 시스템은 단일 물리계 시스템과 비교하여 엔지니어의 경험에 의존하여 설계(Design)하기가 어려운 특성이 있다. 이에 이 연구 논문에서는 이런 멀티 피직스 시스템을 해석하고 최적화 하기위한 노력을 소개한다.

  • PDF

Prediction of Thermo-mechanical Behavior for CNT/epoxy Composites Using Molecular Dynamics Simulation (분자동역학 시뮬레이션을 이용한 CNT/에폭시 복합재의 열기계적 거동 예측)

  • Choi, Hoi Kil;Jung, Hana;Yu, Jaesang;Shin, Eui Sup
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.260-264
    • /
    • 2015
  • In this paper, molecular dynamics (MD) simulation was carried to predict thermo-mechanical behaviors for carbon nanotube (CNT) reinforced epoxy composites and to analyze the trends. Total of six models having the volume fractions of CNT from 0 to 25% in epoxy were constructed. To predict thermal behaviors, temperature was increased constantly from 300 to 600 K, and the glass transition temperature ($T_g$) and coefficient of thermal expansion (CTE) analyzed using the relationship between temperature and specific volume. The elastic moduli that represented to the mechanical behaviors were also predicted by constant strain. Additionally, the effects of functionalization of CNT on mechanical behaviors of composite were analyzed. Models were constructed to represent CNTs functionalized by nitrogen doping and COOH groops, and interfacial behaviors and elastic moduli were analyzed. Results showed that the agglomerations of CNTs in epoxy cause by perturbations of thermo-mechanical behaviors, and the functionalization of CNTs improved the interfacial response as well as mechanical properties.

Cure Behaviors of Epoxy Resin Initiated by Methylanilinium Salts as Latent Cationic Curing Agent (잠재성 양이온 경화제인 Methylanilinium염에 의해 개시된 에폭시 수지의 경화 거동)

  • 박수진;김택진;이창진;이재락;박정규
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.168-176
    • /
    • 2001
  • The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluoroantimonate (CMH) curing agent as a thermal latent initiator on thermal behaviors, rheological properties, and thermal stability of diglycidylether of bisphenol A (DGEBA) epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic at a given temperature. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator, due to high activity of CMH. Rheological properties of the system were investigated under isothermal condition using a rheometer The gelation time was obtained from the analysis of storage modulus (G'), loss modulus (G"), and damping factor (tan $\delta$). As a result, the reduction of gelation time was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization, due to difference of activity. The thermal stability of the cured epoxy resin was discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

  • PDF

The Finite Element Formulation and Its Classification of Dynamic Thermoelastic Problems of Solids (구조동역학-열탄성학 연성문제의 유한요소 정식화 및 분류)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.37-49
    • /
    • 2000
  • This paper is for the first essential study on the development of unified finite element formulations for solving problems related to the dynamics/thermoelastics behavior of solids. In the first part of formulations, the finite element method is based on the introduction of a new quantity defined as heat displacement, which allows the heat conduction equations to be written in a form equivalent to the equation of motion, and the equations of coupled thermoelasticity to be written in a unified form. The equations obtained are used to express a variational formulation which, together with the concept of generalized coordinates, yields a set of differential equations with the time as an independent variable. Using the Laplace transform, the resulting finite element equations are described in the transform domain. In the second, the Laplace transform is applied to both the equation of heat conduction derived in the first part and the equations of motions and their corresponding boundary conditions, which is referred to the transformed equation. Selections of interpolation functions dependent on only the space variable and an application of the weighted residual method to the coupled equation result in the necessary finite element matrices in the transformed domain. Finally, to prove the validity of two approaches, a comparison with one finite element equation and the other is made term by term.

  • PDF

Experimental performance evaluation and comparison for lightweight piezo-composite actuator LIPCA (압전 복합재료 작동기 LIPCA에 대한 성능 비교실험 및 분석)

  • 김균열;박기훈;윤광준;박훈철
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.41-47
    • /
    • 2003
  • This paper is concerned with the performance evaluation and comparison analysis fur several kinds of LIPCA (Lightweight Piezo-Composite Actuator) device system. LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer was sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. To investigate the effect of lay-up structure of the LIPCA on the actuating performance, four kinds of actuator with different lay-up stacking sequence were designed, manufactured, and tested. The performance of each actuator was evaluated using an actuator test system consisted of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. From the comparison of the performance of the LIPCA prototypes, it was found that the actuator with higher coefficient of unimorph actuator can generate larger actuating displacement.

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.