• Title/Summary/Keyword: 열 전달계수

Search Result 248, Processing Time 0.021 seconds

Determination of acoustic emission signal attenuation coefficient of concrete according to dry, saturation, and temperature condition (포화유무 및 온도조건에 따른 콘크리트 음향방출 신호 감쇠계수 결정)

  • Lee, Hang-Lo;Hong, Chang-Ho;Kim, Jin-Seop;Kim, Ji-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.39-55
    • /
    • 2022
  • This study carried out the laboratory tests for AE signal attenuation to determine the attenuation coefficient (α) of silo concrete in Gyeongju low and intermediate-level disposal environments. The concrete samples were prepared by satisfying the concrete mixing ratio used in the Gyeongju disposal silo, and these samples were additionally exposed depending on the temperature conditions and saturation and, dry condition. As a result of attenuation tests according to the transmission distance on three concrete specimens for each disposal condition, the AE amplitude and absolute energy measured on the saturated concrete were higher than that of the dry concrete in the initial range of the signal transmission distance, but the α of the saturated concrete was higher than that of the dry concrete. Regardless of the saturation and dry conditions, the α tended to decrease as the temperature increases. The α had a more major influence on the saturation and dry condition than the temperature condition, which means that the saturation and dry condition is the main consideration in measuring the signal attenuation of a concrete disposal structure. The α of concrete in the disposal environment expect to be used to predict the integrity of silos concrete in Gyeongju low and intermediate-level disposal environments by estimating the actual AE parameter values at the location of cracks and to determine the optimum location of sensors.

Durability Design of Composite Piston in Marine Diesel Engines (박용 디젤엔진용 분리형 피스톤의 내구설계)

  • Son, Jung-Ho;Ha, Man-Yeong;Ahn, Sung-Chan;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.651-657
    • /
    • 2010
  • A composite piston with a crown made of steel and a skirt made of NCI is used in a marine diesel engine, which has a maximum firing pressure of over 180 bar and a high thermal load. In the fatigue design of the composite piston, the fatigue is influenced by factors such as the load type, surface roughness, and temperature; further, the distribution ratio of the firing force from the crown to the skirt is important for optimizing the design of the crown and skirt. In this study, the stress gradient method was used to consider the effect of the load type. The temperature field on the piston was predicted by cocktail-shaking cooling analysis, and influence of high temperature on fatigue strength was investigated. The load transfer ratio and contact pressure were optimized by design of the surface shape and accurate tolerance analysis. Finally, the cooling performance and durability design of the composite piston were verified by performing a long-term prototype test.

Effects of the Concentration and the Temperature on the Thermophysical Properties of Purely-Viscous Non-Newtonian Fluid (순수점성 비뉴톤유체의 물성치들에 대한 농도 및 온도의 영향)

  • 조금남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.670-680
    • /
    • 1994
  • The thermophysical properties of Non-Newtonian fluid as the function of the temperature and the concentration are needed in many rheological heat transfer and fluid mechanics problems. The present work investigated the effects of the concentration and the temperature on the thermophysical properties of purely-viscous Non-Newtonian fluids such as the isobaric thermal expansion coefficient, density, zero-shear-rate viscosity, and zero-shear-rate dynamic viscosity within the experimental temperature range from $25^{\circ}C$ to $55^{\circ}C$. The densities of the test fluids were determined as the function of the temperature by utilizing a reference density and the least square equation for the measured isobaric thermal expansion coefficient. As the concentration of purely-viscous Non-Newtonian fluid was increased up to 10,000 wppm, the densities were proportionally increased up to 0.4%. The zero-shear-rate viscosities of test fluids were measured before and after the measurements of the first thermal expansion coefficients and the densities of Non-Newtonian fluid. Even though they were changed up to approximately 22% due to thermal aging and cycling, they had no effects on the thermal expansion coefficients and the densities of Non-Newtonian fluid. The zero-shear-rate dynamic viscosities for purely-viscous Non-Newtonian fluids were compared with the values for distilled water. They showed the similar trend with the zero-shear-rate viscosities due to small differences in the densities for both distilled water and purely-viscous Non-Newtonian fluid.

A Study on the Damage to a Concrete Bridge Pier due to Fire (화재를 입은 콘크리트 교각의 손상에 관한 연구)

  • 윤우현
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.117-125
    • /
    • 1995
  • In this study, the damage to a concrete br~dge pier due to flre caused by the fall of an oil truck were investigated by the use of FEM and by tensile tests for reinfortements. And thtse results were analyzed and compared with the measured values. In the FEM calculations, the selected variable was the fire temperature $T_a=500-800^{\circ}C$. The fixed values were the heat transition coefficient ${\alpha}=2000W/m^2{\cdot}K$. the initial temperature of concrete $T_0=5{\circ}C$ and the fire duration t=30 minutes. As the results obtained from numerical calculations, the property darrlage zone ap,)eared to be 1.5-4.1cm and the structure damage zone appeared to be 8.7- 10.1cm from the concrete surface. And this results give values very similar to those measured, nanlelv 2-4cm and 8~10cm respectively. The results frorn tensile tests give no serious loss of the tensile strength.

Numerical Study on Heat Transfer Performance of Crossflow Fin-tube Heat Exchanger Depending on Different Fan Positions (직교류 핀-튜브형 열교환기에서 팬 위치변화에 따른 열전달 성능변화 연구)

  • Kim, Won Hyung;Park, Tae Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.271-278
    • /
    • 2015
  • The convective heat transfer of a crossflow fin-tube heat exchanger was studied numerically. In order to investigate the dependence of the heat transfer performance on the fan position, several cases with different blowing and suction types were selected for the fan position. A staggered tube arrangement was used for the heat exchanger, and the temperatures of the tube wall and air were $50^{\circ}C$ and $30^{\circ}C$, respectively. The three-dimensional flow structures were examined based on the results. In addition, the convective heat transfer coefficient and mean temperature difference between the inlet and outlet of the heat exchanger were analyzed for the various fan positions, and the heat transfer performance was investigated

Flow Characteristics of R600a in an Adiabatic Capillary Tube (단열 모세관내 R600a의 유동 특성)

  • Ku, Hak-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 2010
  • In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

Effects of Variable Properties on the Laminar Heat Transfer around a Circular Cylinder in a Uniform Flow (물성치의 변화를 고려한 균일유동 중에 있는 원형 실린더 주위의 층류 열전달)

  • 강신형;홍기혁;고상근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1584-1595
    • /
    • 1993
  • Many researches were carried out to estimate heat transfer rate on a circular cylinder in a uniform flow. Various empirical correlations were suggested in the past through expermental studies, however there are considerable discrepancies in the estimated values of heat transfer coefficient. Effects of variable properties of fluid on the heat transfer between a circular cylinder and the external uniform flow were numerically investigated in the present study. The flow and temperature fields were solved using a finite volume method for the uniform flow temperature of 200-900K and the wall temperature of 300-900K. The cold as well as the hot cylinders in the uniform flow of constant temperature were investigated. A unified correlation was obtained for the both cases.

Evaporation Heat Transfer and Pressure Drop Characteristics of Refrigerant R-22 in a P1ate and Shell Heat Exchanger (Plate and Shell 열교환기내의 R-22 증발열전달 및 압력강하 특성에 관한 실험적 연구)

  • Seo, Mu-Gyo;Park, Jae-Hong;Kim, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1318-1326
    • /
    • 2001
  • The evaporation heat transfer coefficient and pressure drop for refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were farmed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of 45 ° Upflow boiling of refrigerant R-22 in one channel receives heat from the hot downf1ow of water in the other channel. The effects of the mean vapor quality, mass flux, heat flux and pressure of R-22 on the evaporation heat transfer and pressure drop were explored. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that both the evaporation heat transfer coefficient and pressure drop increase with the vapor quality. At a higher mass flux, the evaporation heat transfer coefficient and pressure drop are higher for the entire range of the vapor quality Raising the imposed wall heat flux was found to slightly improve the heat transfer, while at a higher refrigerant pressure, both the heat transfer and pressure drop are slightly lower.

Numerical Analysis of Unsteady Heat Transfer for the Location Selection of Anti-freeze for the Fire Protection Piping with Electrical Heat Trace (소방 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Lee, Dong-Wook;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • In this paper, the unsteady incompressible Navier-Stokes equations coupled with energy equation were solved to find out the optimal location of electrical heat trace for anti-freeze of water inside the pipe for fire protection. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the numerical experiments, the isotherms and the vector fields in water region were obtained. Furthermore, it was found that the lowest part of the pipe cross-section was an optimal position of electrical heat trace assuming the constant thermal expansion coefficient of water since the minimum temperature of the water with the position is higher than those with the other positions.

A Study on the Condensation Heat Transfer and Pressure Drop in Internally Grooved Tubes Used in Condenser (응축기용 낮은 핀관의 내부 나선 홈에 의한 응축 열전달 성능과 압력손실에 관한 연구)

  • Han, Kyuil;Cho, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.212-222
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF