• Title/Summary/Keyword: 열 관리

Search Result 2,053, Processing Time 0.027 seconds

A CPU Cooling control method for efficient power management on server system (서버 시스템의 효율적인 전력 관리를 위한 CPU 냉각 제어 기법)

  • Oh, Jin-Soo;Lim, Sung-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.173-175
    • /
    • 2012
  • 데이터 센터와 같은 대량의 서버를 사용하는 시설이 늘어남에 따라 전력 소모 관리와 열 발생 관리는 매우 중요한 문제가 되었다. 열 관리 연구들의 경우 대부분 열관리의 목적이 시스템의 오류를 방지하는 것이다. 하지만 열 관리에는 많은 전력 소모량이 사용된다. 따라서 열관리를 잘 해주는 것은 전력 관리를 효율적으로 해주는 것이라고 할 수도 있다. 본 논문은 열 관리를 전력 관리라는 측면에서 접근했다. 즉 열 관리에 사용되는 전력과 열로 인해 발생하는 전력을 고려해서 이를 최소화하는 냉각 제어 기법을 구현하였다. 우리가 개발한 냉각 제어 기법을 실제로 실험해서 기존의 냉각 기법과 비교해본 결과 전력 소모량을 17% 감소시키는 것을 확인 할 수 있었다.

시계열(時系列) 자료(資料)와 재무관리(財務管理) 이론(理論)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Management
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 1994
  • 재무관리의 모든 영역을 완벽하게 이해하기 위하여는 기업재무관리와 투자론을 비롯하여 금융산업 전체에 대한 연역적 방법에 의한 이론의 정립과 실증분석을 통한 이론의 정립이 관건이라 할 수 있다. 이 논문에서는 실증 분석을 수행함에 있어 우리나라에서 활발하게 논의가 진행되지 않는 시계열분석의 영역을 살펴보았다. 그것은 이와 같은 분야를 천착해 봄으로써 이 분야가 재무관리에 대한 통찰력과 현실 적합성의 판단력을 배양하는데 큰 공헌을 할 수 있으리라는 믿음 때문이다. 이 논의를 통하여 시계열 분석에 대한 활발한 연구가 진행되기를 기대하고 있다. 시계열 확률과정에 대한 재무관리이론을 연역적으로 도출하기는 용이하지 않다. 시계열 분석에서 제시되는 여러 방법론을 재무관리의 시계열에 적용하여 그 시계열의 성질과 특성을 파악하면 그것이 그대로 현실에 적용될 수 있을 것이다. 이러한 연구의 결과는 어떤 형태로든 연역적 방법에 의한 이론의 정립에 깊은 영향을 미칠 것이다. 뿐만 아니라 연속시간의 틀과 이시적(異時的) 양태하(樣態下)에서 많은 재무관리 모형들이 개발되고 있으며, 동태적 상황을 해명하는 의도에서 이 모형들이 연구되고 있는 만큼 시계열 분석은 이 분야에 직접적으로 이용될 수 있다. 시계열 분석에서 제시된 많은 모형들이 재무관리의 실증적 현상을 설명하는데 효과적으로 활용될 수 있다. 뿐만 아니라 현재 연역적으로 개발된 모형들이 설명할 수 없는 부분을 시계열 분석이 직접적으로 해명할 수 있는 능력을 확보하고 있음도 제시되었다. 증권의 현가모형(現價模型), 이자율의 기간구조, 효율적 시장가설도 주가의 변동성 등은 시계열 분석의 다양한 기법을 사용하여 검증되어야 하며, 이 경우 특히 분산의 추정방법을 여러 측면에서 개발해 야 할 것이다. 시계열 분석에서는 두개 또는 그 이상의 기법을 하나로 통합하는 방법이 있을 수 있다. ARIMA와 ARCH가 결합되는 것을 본 바 있다. 구조적(構造的) 변화(變化)(structural change)모형(模型)과 ARCH의 결합도 가능하다. 다른 분야로서는 변동성(變動性)에 관한 연구이다. 변동성(變動性)에 관한 연구는 variance bounds test에 한정된 감이 있으나 정보와 변동성의 관계가 중요시되고 있는 만큼 정보집합과 시계열 분석 기법의 결합은 변동성의 연구에 새로운 지평을 열어줄 것으로 보인다. 따라서 정보집합의 형성에 따라 새로운 추정방법이 개발될 여지가 풍부하다.

  • PDF

Model Parameter Based Fault Detection for Time-series Data (시계열을 따르는 공정데이터의 모델 모수기반 이상탐지)

  • Park, Si-Jeo;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.67-79
    • /
    • 2011
  • The statistical process control (SPC) assumes that observations follow the particular statistical distribution and they are independent to each other. However, the time-series data do not always follow the particular distribution, and most of cases are autocorrelated, therefore, it has limit to adopt the general SPC in tim series process. In this study, we propose a MPBC (Model Parameter Based Control-chart) method for fault detection in time-series processes. The MPBC builds up the process as a time-series model, and it can determine the faults by detecting changes parameters in the model. The process we analyze in the study assumes that the data follow the ARMA (p,q) model. The MPBC estimates model parameters using RLS (Recursive Least Square), and $K^2$-control chart is used for detecting out-of control process. The results of simulations support the idea that our proposed method performs better in time-series process.

한국 열관리사 협회보-제73호

  • The Korea Heat Energy Engineers Association Reports
    • The Korea Energy Engineers Association Reports
    • /
    • no.73
    • /
    • pp.1-20
    • /
    • 2008
  • 창간 6주년 축사/지부소식/포토뉴스/Company-(주)수국/뒤돌아본 열관리사협회보 6년/Pwople-송기정 서울지부장/'2008년 한국열관리사협회 교육프로그램 안내"/2008년도 법정교육일정/보일러 조종자 특별교육 안내/2008년도 보일러조종자 특별교육 안내/2008년도 자격 검정일정 안내/mocie news/What's up/Boiler Q&A

  • PDF

Learning model management platform based on hash function considering for integration from different timeseries data (서로 다른 시계열 데이터들간 통합 활용을 고려한 해시 함수 기반 학습 모델 관리 플랫폼)

  • Yu, Miseon;Moon, Jaewon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.45-48
    • /
    • 2022
  • IoT 기술의 발전 및 확산으로 다양한 도메인에서 서로 다른 특성의 시계열 데이터가 수집되고 있다. 이에 따라 단일 목적으로 수집된 시계열 데이터만 아니라, 다른 목적으로 수집된 시계열 데이터들 또한 통합하여 분석활용하려는 수요 또한 높아지고 있다. 본 논문은 파편화된 시계열 데이터들을 선택하여 통합한 후 딥러닝 모델을 생성하고 활용할 수 있는 해시함수 기반 학습 모델 관리 플랫폼을 설계하고 구현하였다. 특정되지 않은 데이터들을 기반하여 모델을 학습하고 활용할 경우 생성 모델이 개별적으로 어떤 데이터로 어떻게 생성되었는지 기술되어야 향후 활용에 용이하다. 특히 시계열 데이터의 경우 학습 데이터의 시간 정보에 의존적일 수밖에 없으므로 해당 정보의 관리도 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 해시 함수를 이용해서 생성된 모델을 계층적으로 저장하여 원하는 모델을 쉽게 검색하고 활용할 수 있도록 하였다.

  • PDF

안정적 시계열의 변이상태에 대한 판별연구-변압기 진동신호에 대한 응용을 중심으로-

  • 이정진;정찬수;송정호
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.617-628
    • /
    • 1997
  • 시계열 자료의 변이상태(transition status)에 대한 판별은 여러 분야에서 연구되고 있다. 하지만 변압기의 진동신호와 같이 특정한 시계열모형을 적합시키기 힘든 자료는 변이 상태에 대한 판별이 쉽지 않다. 본 논문에서는 정상적인 변압기에서 발생하는 진동신호에 대하여 각 주기별 최대값, 자기상관계수 및 편자기상관계수 등의 경험적 표본분포를 연구한 후, 이를 이용한 관리도를 만들어 변압기 진동신호의 변이상태에 대한 판별을 하였다. 이 방법은 품질관리의 관리도 이론을 시계열자료에 응용한 것으로 비정상적인 변압기 진동신호의 판별에 만족스러운 결과를 가져왔다.

  • PDF

주가의 장기적 기억, 자기회귀 분수적불 이동평균 과정과 주가형성

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.9 no.1
    • /
    • pp.95-118
    • /
    • 2003
  • 한 시계열의 자기상관계수의 절대값을 시차를 무한대로 접근시켜 가면서 각 시차에 대하여 구하고 이 절대값을 모두 더한 값이 무한일 때 이 시계열은 장기기억을 가진다. 이로 인하여 장기기억 모수를 추정하는데에는 자기상관을 기본으로 한다. 표본의 자기상관과 이론적 자기상관 사이의 거리를 최소하여 추정통계량을 유도하고 있는 것이 일반적이다. 이 경우에는 정상적 과정에 한하여 적용이 가능하다. 시계열은 어느 시계열이던지 간에 이 시계열에 적합한 모형이 존재할 것이고 이 모형을 시계열에 적용하면 잔차 시계열을 얻을 수 있다. 원래 시계열의 이론적 상관 대신 원래 시계열의 잔차 시계열의 자기상관과 표본의 자기상관 사이의 거리를 최소하여 추정통계량을 얻으면 통계량의 계산이 편하고 이 추정량은 정상적 시계열과 비정상적 시계열에 다같이 적용할 수 있다. 본 논문에서는 잔차의 자기상관을 이용하여 자기회귀 분수적분 이동평균 과정의 모수 추정량을 도출한다. 그리고 이 추정 통계량에 입각하여 주가의 형성과정을 살펴보고 장기기억이 옵션가격과 포트폴리오 구성에 미치는 영향을 밝힌다.

  • PDF