• Title/Summary/Keyword: 열화학 복합재료

Search Result 18, Processing Time 0.021 seconds

Surface properties of epoxy/glass Eber composites by environmental conditions (사용 환경조건에 따른 Epoxy/Glass Fiber 복합재료의 표면특성)

  • 임경범;이백수;황명환;김윤선;유도현;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.279-284
    • /
    • 2000
  • In order to analysis the degradation process of epoxy/glass fiber for outdoor condition, FRP laminate was exposed to high temperature and water. Then the degradation process was evaluated by comparing contact angle, surface potential decay, and surface resistivity. For the change of wettability, the contact angle of thermal-treated specimen with the high temperature of $200^{\circ}C$ increased. But that of water-treated specimen decreased. The characteristic of surface potential decay shows the tendency of the remarkable decrease on water-treated specimens, but increase on thermal-treated specimen compared with untreated one. Also, for the surface resistivity, it shows the same trend compared with the change of contact angle.

  • PDF

Structural Analysis and Failure Prediction of Tape-Wrapped Structures (테이프래핑 구조물의 구조 해석 및 파단 예측)

  • Goo, Nam-Seo;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Yeol-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.17-21
    • /
    • 2004
  • Tape-wrapped structures have been generally used in nozzle parts of guided missiles. A continuous band of woven composite material is wrapped around a mandrel that is designed to produce real products. After going through a vacuum bagging process, this woven composite material is cured in a high-pressure autoclave or hydroclave. However, tape-wrapped structures are difficult to analyze because of its large thickness and inclined lay-up. The present study investigates the method of analysis and failure prediction of tape-wrapped structures. The four-point bending test and its finite element analysis were performed to study how to model tape-wrapped structures and investigate their failure characteristics.

Experimental Study on Calcium Chloride Impregnated Perlite for Thermochemical Heat Storage (염화칼슘이 함침된 펄라이트를 이용한 화학축열에 대한 실험적 연구)

  • Jung, Han Sol;Kim, Hak Seong;Hwang, Kyung Yub;Kim, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.123-127
    • /
    • 2015
  • Thermochemical heat storage is a cutting-edge technology which can balance the energy usage between supplies and demands. Recent studies have suggested that thermochemical heat storage has significant advantages, compared to other storage methods such as latent heat storage or sensible heat storage. Nevertheless, ongoing research and development studies showed that the thermochemical heat storage has some serious problems. To bring the thermochemical heat storage method into market, we introduce experimental setup with composite material using perlite that supports calcium chloride sorbent. Also, to compare thermal properties with composite material, we used pure thermochemical material. Then, we found that the composite material has higher heat storage density by mass than pure calcium chloride. Moreover, it can be easily regenerated, which was impossible in the pure thermochemical materials.

Strength of sandwich-to-laminate single-lap bonded joints in elevated temperature and wet condition (샌드위치와 적층판을 접착한 단일겹침 체결부의 고온습도 강도특성 연구)

  • Choi, Bae-Hyun;Kweon, Jin-Hwe;Choi, Jin-Ho;Shin, Sang-Jun;Song, Min-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1115-1122
    • /
    • 2010
  • The main objective of this study is to experimentally investigate the effect of adhesive thickness and environmental conditions on the failure and strength of sandwich-to-laminate bonded joints. Three different adhesive thicknesses (t=0.2, 2 and 4 mm) and two different environmental conditions were considered. Environmental conditions include the RTD(room temperature and dry condition) and ETW(elevated temperature and wet condition). Test results show as the adhesive thickness increases from 0.2 mm to 2 and 4 mm, the joint strength decreases 16 and 30%, respectively. Regarding the effect of environmental conditions, except for one case, the joint strength in the ETW conditions turned out to be 12% higher than those in the RTD conditions. In the joints with adhesive thickness of 0.2 mm, remarkable difference from RTD condition was not found.

A study on the Properties of Composite Systems Using Polymer-Modified Mortar and Epoxy Resins for Waterproofing and Anti-Corrosion of Concrete Structures (시멘트 혼입 폴리머와 에폭시수지를 복합한 수처리 콘크리트구조물용 방수방식재료의 성능평가에 관한 연구)

  • Bae Kee-Sun;Jang Sung-Joo;Oh Sang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.3-10
    • /
    • 2005
  • The purpose of this study is to investigate the properties of composite systems using polymer cement and epoxy resins for waterproofing and anti-corrosion to concrete structures such as water supply facilities and sewage-works. For the waterproofing and anti-corrosion of concrete structures, there can be required various properties such as absorption capacity and water permeability, adhesion and tensile strength, hair crack-resistance, impact-resistance, repeated low and high temperature test and chemical resistance, soundness for drinking water, soundness for drinking water and etc. In this study these engineering properties of composite systems using polymer-modified mortar and epoxy resins were examined and could be confirmed to satisfy the guidelines of KS. Especially, it was turn out that the adhesion properties was excellent and high crack-resistance up to 1.49 mm will be perform.

Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1) (산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1))

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.141-152
    • /
    • 1994
  • The results of an experimental study on the development and the evaluation of lightweight and high strength composites utilizing by-products and calcium silicates for construction materials are presented in this paper. The composites using early strength portland cement, by-Products( f1y ash, silica fume), silica powder, quick lime, gypsum, A1 powder and fibers(PAN-derived CF, alkali-resistance GF) were prepared using various mixing conditions. As the test results show, PAN-derived CF and alkali-resistance GF were suitable for rein-forcing fiber of the composites. And the mechanical properties,such as compressive tensile flexural strength, and toughness of Lt. Wt. fiber reinforced calcium silicates cement comp-osites were improved by increasing the fly ash and silica fume contents, and fiber contents, especially by increasing fiber contents the toughness of the composites were remarkably in-creased. Also, compressive tensile flexural strength,and toughness of the composites rein-forcing PAN-derived CF were higher than those of the composites reinforcing alkali-resistance GF..

A Study on Multiple Bases for Development of Natural Adhesives for Woodcraft using Cellulose Extracts from Wood and their Application Potential - Focused on Salicis radicis cortex, hibiscus, Chinese wild peach resin - (셀룰로오스계 목재 추출 성분을 이용한 목공예용 천연 접착제의 개발 및 적용 가능성에 대한 복합적 기반 연구 - 유근피·황촉규·도교 중심으로 -)

  • Wi, Koang Chul;Oh, Seung Jun;Han, Won Sik;Park, Min Sun
    • Korea Science and Art Forum
    • /
    • v.37 no.5
    • /
    • pp.239-248
    • /
    • 2019
  • This study started from the need to improve one of shortcomings of synthetic PVAc adhesives - potential physical harm and environmental hazards to the workers or their users. As a matter of fact, PVAc adhesives are currently mainly used because of their convenience and economy for the production of woodcrafts. The purpose of this study was to develop natural adhesives through research on natural adhesives in step with the current increase of societal attention to environmental friendliness and rapid surge in their demand in the face of such problems. So, the study attempted research on the bases to develop natural adhesives for woodcraft, using cellulose extracts from wood - natural adhesive material. The findings of the study were as follows. Firstly, natural adhesives showed the improved effect in the field of adhesive strength, a basic physical property by 0.2 - 4 times compared with the existing materials and the study confirmed they had the similar or stable pH value. Besides, they had good reversibility, demonstrating their basic physical property as a natural adhesive for woodcraft. While, their durability to ultraviolet ray degradation also showed an excellent result value being better by 1.5 - 8.5 times than the existing materials. The study expects natural adhesives with improved and better performances compared with the existing materials could be developed, if further research on adhesive strength, antibiosis, conservative property were to continue by developing refinery technology for cellulose extracts from wood and rendering the functionality to them.

A Study on Utilizing Instrumented Indentation Technique for Evaluating In-field Integrity of Nuclear Structures (원전 구조물의 가동 중 건전성 평가를 위한 연속압입시험법의 활용에 관한 연구)

  • Song, Won-Seok;Kim, Seung-Gyu;Ahn, Hee-Jun;Kim, Kwang-Ho;Kwon, Dongil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • Power generating unit structures are designed and built to meet standard to secure its safety for expected life time. As the structures have been exposed to combined environment, degradation of structure material is accelerated and it can cause unexpected damage; evaluating precise mechanical properties of weak site like welded area is an essential research area as it is directly connected to safety issues. Existing measuring technique like tensile test requires specific size in testing specimen yet it is destructive method which is hard to apply on running structures. To overcome above mentioned limitation, IIT is getting limelight as it is non-destructive and simple method. In this study, latest technique is introduced to evaluate tensile property and residual stress by analyzing stress field occurs under the indenter while IIT is performed. Test on welded area, the weak site of nuclear structures have been practiced and confirmed that IIT can be usefully applied to evaluate integrity in industry.