• Title/Summary/Keyword: 열화학

Search Result 748, Processing Time 0.024 seconds

Quantitative NDE Thermography for Fault Diagnosis of Ball Bearings with Micro-Foreign Substances (미세 이물질이 혼입된 볼베어링의 고장 진단을 위한 정량화 열화상에 관한 비파괴평가 연구)

  • Hong, Dongpyo;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, a non-destructive evaluation (NDE) mothod is proposed for ball bearings contaminated with micro foreign substances, which were inserted into a ball bearing to create a defective specimen. The non-contact quantitative infrared thermographic technique was applied for NDE condition monitoring. Passive thermographic experiments were conducted to perform early fault diagnosis, for bearings operated at optimized torque status under a dynamic load condition. The temperature profiles for normal and defective specimens were quantitatively compared, and the thermographic data analyzed. Based on the NDE results, the temperature characteristics and abnormal fault detection of the ball bearing were quantitatively analyzed according to the rise in temperature.

Study on NDT Fault Diagnosis of the Ball Bearing under Stage of Abrasion by Infrared Thermography (마모 단계의 볼 베어링에 대한 적외선 열화상 비파괴 결함 진단 연구)

  • Seo, Jin-Ju;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • For fault detection about the abrasion stage of rotational machineries under the dynamic loading conditions unlike the traditional diagnosis method used in the past decade, the infrared thermographic method with its distinctive advantages in non-contact, non-destructive, and visible aspects is proposed. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiments were conducted as an alternative way to proceeding the traditional fault monitoring on spectrum analyzer. As results, the thermographic experiment was compared with the traditional vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results obtained as NDT, the temperature characteristics and abnormal fault detections of the ball bearing according to the abrasion stage were analyzed.

A Study on Real-Time Fault Monitoring Detection Method of Bearing Using the Infrared Thermography (적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구)

  • Kim, Ho-Jong;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.330-335
    • /
    • 2013
  • Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.

A Study on Measuring the Temperature and Revising the Result When Measuring the Temperature of NPP Pipes Using Infrared Thermography (적외선 열화상 기술을 이용한 원자력 배관의 온도측정과 보정에 관한 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Kim, Dong-Soo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.421-426
    • /
    • 2009
  • The emissivity is different because the emitted angle changes according to the position of the infrared thermography camera and object. Because of this, the temperature distribution expressed when measuring the temperature by using the infrared thermography system is not the accuracy temperature. Although the real surface temperature is constant, the temperature measured by using infrared thermography camera have error in accordance with the value of emissivity. In this paper, the temperatures of the round cylindrical object and the flat square object that heated to the equal temperature were measured by infrared thermography camera. The emissivity calibration formula and correction table are made with the affect of the view angle and emission angle form the surface temperature value. The error of measured temperature values are corrected by using the emissivity calibration formula and correction table, and apply to defect detection of the nuclear power plant pipe. From the calibration method, reliability surface temperature values were obtained.

Development of LabVIEW Program for Lock-In Infrared Thermography (위상잠금 열화상장치 제어용 랩뷰 프로그램 개발)

  • Min, Tae-Hoon;Na, Hyung-Chul;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • A LabVIEW program has been developed together with simple infrared thermography(IRT) system to control the lock-in conditions of the system efficiently. The IR imaging software was designed to operate both of infrared camera and halogen lamp by synchronizing them with periodic sine signal based on thyristor(SCR) circuits. LabVIEW software was programmed to provide users with screen-menu functions by which it can change the period and energy of heat source, operate the camera to acquire image, and monitor the state of the system on the computer screen. In experiment, lock-in IR image for a specimen with artificial hole defects was obtained by the developed IRT system and compared with optical image.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography (전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구)

  • Hong, Dong-Pyo;Kim, Ho-Jong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology. with valuable suggestions for the future bearing fault detection.

Estimation of Fracture Toughness Degradation of High Temperature Materials by Nonlinear Acoustic Effects (비선형 음향효과에 의한 고온 재료의 파괴인성 열화도 평가)

  • Jeong, Hyun-Jo;Nahm, Seung-Hoon;Jhang, Kyung-Young;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.424-430
    • /
    • 2000
  • In order to develop an ultrasonic evaluation method for properties degradation of high temperature materials, a number of Cr-Mo-V steel samples were heat-treated and their damage mechanism was examined. Ultrasonic parameters such as velocity, attenuation, and more recently developed nonlinear acoustic parameter were measured. The nonlinear acoustic parameter was found to be most sensitive to material degradation mainly attributed to the precipitation of impurities in grain boundaries. When compared to the electrical resistivity results, the nonlinear parameters showed similar behavior. There existed a relatively good correlation between the nonlinear parameter and the fracture appearance transition temperature (FATT) obtained by Charpy V-notch impact test. Based on the relationship between the FATT and the fracture toughness ($K_{IC}$), correlation between the nonlinear parameter and $K_{IC}$ was established.

  • PDF

Insulation Diagnostics and Maintenance of Submarine Medium Voltage Power Cable Systems (해저 케이블 시스템의 열화진단 및 유지보수)

  • 이동영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.80-86
    • /
    • 2003
  • A study on the insulation aging assessment and maintenance for submarine medium voltage power cable systems has been performed The purpose of this work is the economic discrimination and maintenance of bad cables which is likely to cause cable system failure. 1 have found that aging status of submarine cable systems are very poor and in progress. Therefore, we have the replacement of cable terminations and repeat the diagnostic measurement Insulation status were improved with the replacement of cable terminations. I have confirmed, with the electrical md structural analysis of terminations, that the poor aging status of cables are mainly caused not by the cable insulations but by the aging of cable terminations. From the above results, I have also confirmed that the domestic diagnostic system is successful and convenient for the discrimination and maintenance of the damaged cables economically.

A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants (원전 저압케이블 열화도 평가를 위한 초음파 음속계측에 관한 연구)

  • Kim, Kyung-Cho;Kang, Suk-Chull;Goo, Charles;Kim, Jin-Ho;Park, Jae-Seok;Joo, Geum-Jong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed.