• Title/Summary/Keyword: 열화상 이미지

Search Result 77, Processing Time 0.02 seconds

Cleanliness Test by Spray-Type Cleaning Agent for Electronic and Semiconductor Equipment (전자·반도체용 스프레이 분사형 세정제에 대한 청정도 평가)

  • Heo, Hyo Jung;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.688-694
    • /
    • 2009
  • A spray-type cleaning agent in utilizing dust-remover on PCB was chosen to study the cleanliness test and efficiency. In order to choose alternative environmental-friendly cleaning agents, it is important that the systematic selection procedures should be introduced and applied through the evaluation of their cleaning ability, environmental characteristics, and economical factors, and that the objective and effective evaluation methods of cleanliness should be established for the industry. A novel cleaning evaluation method with scanning electron microscopy/energy-dispersive X-ray analysis of surface observation evaluation method and an infra-red thermography camera(THERMOVISION A20 model) was studied in this work. The sound card(CT-2770 model) cut by $2{\times}2cm$ size was used as a part, and before and after the spray cleaning, the cleanliness was observed by the image analyzer of SEM and further the removal efficiency of dust was quantitatively evaluated by the component analysis of EDX. For the parts of P4TE model motherboard and IPC-A-36 PCB plate, before and after the spray cleaning, temperature differences were measured and compared at room temperature and 50 oven temperature by an infra-red thermography camera in the contaminants of dust and iron powder.

Parallel clustering technology for real-time LWIR band image processing (실시간 LWIR 밴드 영상 처리를 위한 병렬 클러스터링 기술)

  • Cho, Yongjin;Lee, Kyou-seung;Hong, Seongha;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.158-158
    • /
    • 2017
  • 비닐포장 하부에 위치한 콩의 생장 초기에 발생한 초엽을 인식하기 위한 연구를 수행중이다. 선행 연구에서 비닐포장에 접촉한 콩 초엽으로 인해 비닐포장 상부 표면의 열 반응 분포에 변화가 있음을 발견하였다. 현장에서 주행 중에 콩 초엽의 위치를 실시간으로 인식하고 연동된 선형 또는 회전형 엑츄에이터를 제어하여 정확한 위치에 천공을 수행하기 위해서는 계측 시스템과 제어 시스템간의 시간적 차이를 최소할 수 있는 실시간 신호 처리 기술이 필수적이다. 선행 연구에서 사용한 다중 IR 센서의 분해능은 $16{\times}4pixel$이며 주파수는 3 Hz로, 폭이 30cm 내외인 비닐포장 상부의 정밀 분석에 한계가 있음을 발견하였다. 이를 해결하기 위하여 분해능과 계측 주기를 개선할 수 있는 초소형 ($1cm{\times}1cm{\times}1cm$) 열화상 센서를 이용하였다. LWIR(Longwave infrared)영역에 해당하는 $8{\mu}m{\sim}14{\mu}m$의 영역에서 $0.05^{\circ}C$의 분해능을 보이는 $ Lepton^{TM}$ (500-0690-00, FLIR, Goleta, CA)모델을 사용하였다. 프레임당 $80{\times}60$ 픽셀의 정보가 2 Byte의 단위로 계측이 되며 9 Hz의 주파수로 대상면의 열 분포를 측정할 수 있다. 이론적으로 초당 정보 전송량은 86,400 Byte ($80{\times}60{\times}2{\times}9$)이며, 1 m를 진행하는 주행형 천공기에 적용할 경우 1 프레임당 10cm 정도의 면적을 측정하므로, 최대 위치 판정 분해능은 약 10 cm / 60 pixel = 0.17 cm/pixel로 상대적으로 정밀한 위치 판별이 가능하다. $80{\times}60{\times}2Byet$의 정보를 0.1초 이내에 분석해야 하는 기술적 과제를 해결하기 위하여 천공 작업기에 적합한 상용 SBC(Single board computer)의 클럭 속도(1 Ghz)로 처리 가능한 공간 분포 분석 알고리즘을 개발하였다. 전체 이미지 도메인을 한 번에 분석하는데 소요되는 시간을 최소화하기 위하여 공간정보 행렬을 균등히 배분하고 별도의 프로세서에서 Feature를 분석한 후 개별 프로세서의 결과를 경합식으로 판정하는 기술을 연구하였다. 오픈 소스인 MPICH(www.mpich.org) 라이브러리를 이용하여 개발한 신호 분석 프로그램을 클러스터링으로 연동된 개별 코어에 설치/수행 하였다. 2D 행렬인 열분포 정보를 공간적으로 균등 분배하여 개별 코어에서 행렬의 Spatial domain analysis를 수행하였다. $20{\times}20$의 클러스터링 단위를 이용할 경우 총 12개의 코어가 필요하였으며, 초당 10회의 연산이 가능함을 확인하였다. 병렬 클러스터링 기술을 이용하여 1m/s 내외의 주행 속도에 대응이 가능한 비닐포장 상부 열 분포 분석 시스템을 구현하였다.

  • PDF

Performance Analysis of the Powerline Communication for Condition Monitoring System of an MW Class Offshore Wind Turbine's Nacelle (MW급 해상풍력발전기 나셀의 상태 감시를 위한 전력선 통신 성능 분석)

  • Sohn, Kyung-Rak;Kim, Kyoung-Hwa;Jeong, Seong-Uk;Nam, Seung-Yun;Kim, Hyun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.3
    • /
    • pp.159-164
    • /
    • 2016
  • The goal of this study is to implement a communication system that can monitor the status of the nacelle using the power cable itself, without the dedicated communication lines such as an UTP cable and optical fiber for the offshore wind turbine. An inductive coupling powerline communication system for a MW class offshore wind turbine was proposed and its communication performance was demonstrated. The inductive couplers was designed for operation at up to 500 A using a ferrite composite materials. Field test was carried out on the wind farms of Jeju island. Using the iperf communication test program, we have obtained more than 15 Mbps data transmission rate through the 100 m power cable that was installed between the nacelle and the bottom of the power converter. In the data transmission stability test for a week, there was no failure ever. The minimum transmission rate was 15 Mbps and the average data rate was about 20 Mbps. Next, we have installed an infrared camera inside the nacelle in order to measure the temperature distribution and variation of the nacelle. The real-time thermal image taken by the camera was successfully sent to the monitoring system without error.

Object Detection Performance Analysis between On-GPU and On-Board Analysis for Military Domain Images

  • Du-Hwan Hur;Dae-Hyeon Park;Deok-Woong Kim;Jae-Yong Baek;Jun-Hyeong Bak;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.157-164
    • /
    • 2024
  • In this paper, we propose a discussion that the feasibility of deploying a deep learning-based detector on the resource-limited board. Although many studies evaluate the detector on machines with high-performed GPUs, evaluation on the board with limited computation resources is still insufficient. Therefore, in this work, we implement the deep-learning detectors and deploy them on the compact board by parsing and optimizing a detector. To figure out the performance of deep learning based detectors on limited resources, we monitor the performance of several detectors with different H/W resource. On COCO detection datasets, we compare and analyze the evaluation results of detection model in On-Board and the detection model in On-GPU in terms of several metrics with mAP, power consumption, and execution speed (FPS). To demonstrate the effect of applying our detector for the military area, we evaluate them on our dataset consisting of thermal images considering the flight battle scenarios. As a results, we investigate the strength of deep learning-based on-board detector, and show that deep learning-based vision models can contribute in the flight battle scenarios.

Development of Robotic Inspection System over Bridge Superstructure (교량 상판 하부 안전점검 로봇개발)

  • Nam Soon-Sung;Jang Jung-Whan;Yang Kyung-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-185
    • /
    • 2003
  • The increase of traffic over a bridge has been emerged as one of the most severe problems in view of bridge maintenance, since the load effect caused by the vehicle passage over the bridge has brought out a long-term damage to bridge structure, and it is nearly impossible to maintain operational serviceability of bridge to user's satisfactory level without any concern on bridge maintenance at the phase of completion. Moreover, bridge maintenance operation should be performed by regular inspection over the bridge to prevent structural malfunction or unexpected accidents front breaking out by monitoring on cracks or deformations during service. Therefore, technical breakthrough related to this uninterested field of bridge maintenance leading the public to the turning point of recognition is desperately needed. This study has the aim of development on automated inspection system to lower surface of bridge superstructures to replace the conventional system of bridge inspection with the naked eye, where the monitoring staff is directly on board to refractive or other type of maintenance .vehicles, with which it is expected that we can solve the problems essentially where the results of inspection are varied to change with subjective manlier from monitoring staff, increase stabilities in safety during the inspection, and make contribution to construct data base by providing objective and quantitative data and materials through image processing method over data captured by cameras. By this system it is also expected that objective estimation over the right time of maintenance and reinforcement work will lead enormous decrease in maintenance cost.

  • PDF

Study on the Morphology of the PC/ABS Blend by High Shear Rate Processing (PC/ABS 블렌드의 고속전단성형에 따른 모폴로지 변화에 관한 연구)

  • Lee, Dong Uk;Yong, Da Kyoung;Lee, Han Ki;Choi, Seok Jin;Yoo, Jae Jung;Lee, Hyung Il;Kim, Seon-Hong;Lee, Kee Yoon;Lee, Seung Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.382-387
    • /
    • 2014
  • The PC/ABS blends were manufactured with high shear rate processing. Changes of the blend morphology were analyzed according to the screw speed and processing time. To find optimal conditions of the high shear rate processing of the PC/ABS blend, blend morphology and size of the dispersed phase, ABS, were observed with a SEM. Also, tensile properties of the PC/ABS blends were measured to investigate the effect of the high shear rate process with the screw speed of 500 rpm to 3000 rpm for processing times of 10s to 40s. Especially, to observe the dispersed phase of the PC/ABS blend clearly, fracture surfaces of the PC/ABS blend were etched with chromic acid solution. As screw speed and processing time increase, dispersed phase size of the PC/ABS blend decreases and mechanical properties of the blend decrease as well. Especially, at screw speed over than 1000 rpm of high shear rate processing, mechanical properties of the PC/ABS blends decrease drastically due to the degradation of the blend during the high shear rate processing. Consequently, the optimal condition of screw speed of the high shear processing of the PC/ABS blend is set at 1000rpm, in this study. Under optimal condition, the PC/ABS blend has relatively high mechanical properties with the relatively stable micro-structure having nanometer scale dispersed phase.

An Experimental Analysis of Ultrasonic Cavitation Effect on Ondol Pipeline Management (온돌 파이프라인 관리를 위한 초음파 캐비테이션 효과에 대한 실험적 분석)

  • Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • In the context of Korean residential heating systems, Ondol pipelines are a prevalent choice. However, the maintenance of these pipelines becomes a complex task once they are embedded within concrete structures. As time progresses, the accumulation of sludge, corrosive oxides, and microorganisms on the inner surfaces of these pipelines diminishes their heating efficiency. In extreme scenarios, this accumulation can induce corrosion and scale formation, compromising the system's integrity. Consequently, this research introduces an ultrasonic generation system tailored for the upkeep of Ondol pipelines, with the objective of empirically assessing its practicality. This investigation delineates three variants of ultrasonic generating apparatuses: those employing surface vibration, external generation, and internal generation techniques. To emulate the presence of contaminants within the pipelines, substances in powder, slurry, and liquid forms were employed. The efficacy of the cleaning process post-ultrasonic wave application was scrutinized over time, with image analysis methodologies being utilized to evaluate the outcomes. The findings indicate that ultrasonic waves, whether generated externally or internally, exert a beneficial effect on the cleanliness of the pipelines. Given the inherent characteristics of Ondol pipelines, external generation proves impractical, thereby rendering internal generation a more viable solution for pipeline maintenance. It is anticipated that future endeavors will pave the way for innovative maintenance strategies for Ondol pipelines, particularly through the advancement of internal generation technologies for pipeline applications.