• 제목/요약/키워드: 열팽창계수 측정

검색결과 132건 처리시간 0.02초

마이크로 게이지를 이용한 다결정 샐리콘 박막의 열팽창 계수 측정 (Measurement of Thermal Expansion Coefficient of Poly-Si Thin Film Using Microgauge)

  • 채정헌;이재열;강상원
    • 한국재료학회지
    • /
    • 제8권1호
    • /
    • pp.85-91
    • /
    • 1998
  • 인이 높은 농도로 도핑되어진 LPCVD 다결정 실리콘 박막의 열팽창 계수를 마이크로 게이지법을 이용하여 측정하였다. 기존의 박막의 열팽창 계수 측정 법에서는 박막이 기판에 증착되어진 상태에서 측정이 이루어지므로, 기판의 탄성계수와 열팽창계수를 미리 알고 있어야 한다. 이에 비해 마이크로 게이지법에서는 박막의 열\ulcorner창 계수를 도출하기 위하여 기판의 탄성계수 값과 열팽창 계수 값을 필요로 하지 않는다는 장점이 있다. 마이크로 게이지법에서는 전류를 가할 경우 줄 발열에 의해 발생한 마이크로 게이지에의 변위를 측정하고, 그 때 계산된 마이크로 게이지의 평균 온도의 관계에서 열팽창 계수를 계산한다. 다결정 실리콘 박막의 열팽창 계수는 2.9 x $10^{-6}$$^{\circ}C$로 측정되었으며, 이 값들의 표준편차는 0.24x$10^{-6}$$^{\circ}C$였다.

  • PDF

GRP 복합관의 열팽창계수 측정 (Measurements of Thermal Expansion Coefficients in GRP Pipe)

  • 오진오;윤성호
    • Composites Research
    • /
    • 제25권1호
    • /
    • pp.26-30
    • /
    • 2012
  • 본 연구에서는 스트레인게이지 회로를 이용하여 GRP 복합관의 열팽창계수를 측정하고자 하였다. 이를 위해 다양한 스트레인게이지 회로를 적용하여 알루미늄 보의 열팽창계수를 측정함으로써 측정방법의 타당성을 검증하였다. 또한 스트레인게이지의 부착위치와 반복횟수를 달리하며 또한 열팽창계수가 다른 스트레인게이지를 적용한 경우에 대해 GRP 복합관의 길이방향 및 원주방향 열팽창계수를 측정함으로써 열변형률 결과와 측정결과의 재현성에 미치는 영향을 조사하였다. 연구결과에 따르면 GRP 복합관의 경우 보강된 유리섬유에 의해 원주방향의 열변형률이 제한되어 원주방향 열팽창계수가 길이방향의 열팽창계수에 비해 낮게 나타났다. 또한 GRP 복합관의 후경화로 인해 측정횟수가 증가할수록 측정된 열팽창계수는 다소 증가하지만 증가폭은 점차 감소하였다. 아울러 열팽창계수가 다른 스트레인게이지를 적용하더라도 기준보상시편을 통해 스트레인게이지의 열변형률을 보상하면 동일한 열팽창계수가 얻어짐을 알 수 있었다.

패키지 기판의 Warpage 해석을 위한 열팽창계수의 측정 및 평가 (Measurement and Evaluation of Thermal Expansion Coefficient for Warpage Analysis of Package Substrate)

  • 양희걸;주진원
    • 대한기계학회논문집A
    • /
    • 제38권10호
    • /
    • pp.1049-1056
    • /
    • 2014
  • 전자 부품을 이루고 있는 재료들은 여러 다른 열팽창계수를 가지고 있다. 새롭게 개발된 재료나 적용하려는 온도범위가 다른 경우에는 실제 제품을 구성하고 있는 그 재료 자체의 열팽창계수를 측정할 필요가 있으며 이에 대한 신뢰성 있는 측정방법이 필요하다. 재료의 온도가 변화하면, 그에 부착된 스트레인 게이지 저항체의 출력은 기계적인 하중뿐 아니라 온도변화에 의해서도 복합적으로 발생한다. 본 논문에서는 이러한 스트레인 게이지의 특성을 이용하여 온도가 증가함에 따라 변하는 변형률을 측정하고 이로부터 재료의 열팽창계수를 구하는 방법을 실험적으로 제시하였다. 실험의 신뢰성을 검증하기 위해서 일반적으로 열팽창계수가 잘 알려진 탄소강, 알루미늄 및 구리시편을 사용해서 열팽창계수를 측정하고 그 결과를 비교하여 열팽창계수 측정방법의 신뢰성을 평가하였다. 또한 이 방법을 전자 패키지를 구성하고 있는 새로운 전자재료에 적용하여 무섬유 패키지 기판의 온도에 따른 열팽창계수를 측정하였다.

우주용 구조 재료의 초정밀 열팽창계수 측정시스템 설계 (Design of High-precision CTE measurement System for the Structural Materials in Space Applications)

  • 김홍일;한재홍;양호순;조창래;조혁진;김홍배
    • 한국항공우주학회지
    • /
    • 제36권9호
    • /
    • pp.916-922
    • /
    • 2008
  • 우주용 구조물에 사용되는 재료는 치수 안정성을 위해서 열팽창계수를 최소화하도록 설계, 제작되어야 한다. 이를 위하여 우주용 재료 시편의 정밀한 열팽창계수를 측정하여, 그 재료의 열 특성에 대한 정확한 데이터를 확보할 필요가 있다. 그리고 시편뿐만 아니라 실제 사용될 구조물의 열 변형을 우주 환경에서 직접 측정할 필요가 있다. 따라서 본 연구에서는 고진공에서 정밀한 변위 측정을 위하여 변위 측정 간섭계와 항우연의 보조 챔버를 활용한 열팽창계수 측정 시스템을 설계하였다. 또한 본 측정 시스템은 길이 500mm 정도의 긴 구조물의 열 변형

탄소섬유 복합재료의 온도변화에 대한 열팽창계수 특성 변화 규명 (Characterization of Thermal Expansion Coefficients of Carbon/Epoxy Composite for Temperature Variation)

  • 김주식;윤광준
    • Composites Research
    • /
    • 제12권6호
    • /
    • pp.1-7
    • /
    • 1999
  • 본 논문은 탄소/에폭시 적층판의 온도변화에 대한 열팽창계수 변화를 예측하고 실험적으로 검증한 것으로 재료의 주축 방향에 대한 기계적 탄성 특성과 열팽창계수를 상온에서 경화온도 범위까지 측정하였으며 온도 함수로 특성화 하였다. 온도 함수로 특성화된 물성을 고전 적층판 이론에 적용함으로써 온도 변화에 대해 일반 적층각 적층판 복합재료의 열팽창계수를 예측할 수 있는 해석적 모델을 제시하였다. 이를 증명하기 위해서 일반 적층각 적층판의 열팽창계수를 측정하였으며 이를 해석적 모델로 계산된 예측치와 비교하였다. 실험적 검증 결과 온도 변화에 대한 일반 적층판의 열팽창계수의 변화가 제시된 해석적인 계산 방법을 사용함으로써 적절하게 예측될수 있음을 볼수 있다.

  • PDF

콘크리트포장의 초기 열팽창계수 및 건조수축 측정 연구 (Measurement of the Early-Age Coefficient of Thermal Expansion and Drying Shrinkage of Concrete Pavement)

  • 윤영미;서영찬;김형배
    • 한국도로학회논문집
    • /
    • 제10권1호
    • /
    • pp.117-122
    • /
    • 2008
  • 콘크리트포장은 시공초기의 품질관리수준에 따라 전체수명이 결정될 정도로 시공초기의 품질관리가 매우 중요하다. 이러한 초기 품질관리는 콘크리트포장의 초기거동을 잘 파악하여 초기거동을 조절할 수 있는 방안을 도출하는 것이 중요하다. 콘크리트포장의 초기거동에 영향을 주는 요소는 크게 두 가지가 있다. 첫째는 콘크리트의 건조수축이고, 두 번째는 수화열 및 대기온도 변화에 따른 포장체의 온도변화이다. 따라서, 콘크리트의 열팽창계수와 건조수축은 콘크리트의 초기거동에 매우 중요한 요소라 할 수 있다. 지금까지의 열팽창계수는 완전히 양생된 콘크리트에 대해 실험하는 것이 일반적이었기 때문에 시공초기에 열팽창계수를 얻는데 한계가 있어 왔다. 또 건조수축도 시간방법의 한계로 초기 건조수축을 측정하는데 어려움이 있어 왔다. 본 연구에서는 콘크리트포장의 초기 거동을 조절할 수 있는 방안을 도출하기 위하여, 콘크리트의 초기 건조수축과 열팽창계수를 측정하고 이를 통해 콘크리트포장의 초기 거동 예측프로그램의 입력변수들과 적용 모델들에 대한 자료제공 및 검증을 위 한 기초자료를 제공하는데 그 목적을 두었다. 본 연구에서 얻은 결론은 현장에서 초기 콘크리트의 열팽창계수 값을 측정한 결과 $8.9{\sim}10.8{\times}10^{-6}/^{\circ}C$ 값을 나타내었으며, 콘크리트의 건조수축에 있어서 깊이별 effect와 size effect가 존재하는 것으로 분석되었다.

  • PDF

마이크로미터 크기 실리카 입자로 강화된 에폭시 복합재료의 열팽창계수 측정 및 평가 (Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer-Sized SiO2 Particle-Reinforced Epoxy Composites)

  • 조휴상;강희용;이교우
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.129-135
    • /
    • 2015
  • 본 연구는 마이크로미터 크기의 실리카 입자로 강화된 에폭시 복합재료 시편의 실리카 함량에 따른 열안정성을 기계적 물성인 영률 측정과 열적 물성인 열팽창계수 측정을 통해 평가하였다. 실험한 범위인 에폭시 중량 대비 실리카 함량 70 wt% 시편까지 실리카 함량에 따라 열팽창계수는 지속적으로 감소하여 약 25%까지 감소하여 열안정성이 개선되었으며, 영률 역시 점진적으로 증가하여 약 51%까지 증가하였다. 또한, 기존 연구에서 제시된 몇 가지 경험식 모델을 통한 해석결과를 실험결과와 비교하였는데, 열팽창계수 측정결과는 체적탄성계수와 전단탄성계수를 고려한 Kerner 모델의 결과와 잘 맞았으며, 영률 결과는 마이크로 크기 충전제에 대한 수치모델인 Mori-Tanaka 모델과 잘 부합하였다. 이를 통해 복합재료의 열팽창 및 영률 예측을 위한 모델에서는 체적분률 외에 충전제 함유량에 따른 추가적인 물성 변화를 고려해야 함을 알 수 있었다.

온도응력 측정용 시험장치의 개발 (Development of Thermal Stress Measuring System)

  • 전상은;김국한;김진근
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.228-236
    • /
    • 2001
  • 매스콘크리트 구조물에서 발생하는 온도응력을 예측하기 위해 많은 연구가 해석적인 방법과 실험적인 방법을 통해 수행되어왔다. 그러나 이러한 해석적인 방법과 실험적인 방법으로 온도응력을 예측하는 것은 한계가 있다. 해석적인 방법은 콘크리트의 탄성계수, 열팽창계수와 같은 물성치를 정확히 알아야 한다. 그리고 실험적인 방법은 대부분이 실제 구조물이나 모형구조물을 통하여 직접 온도응력을 측정한다. 그러나 이와 같은 방법은 경제적인 문제뿐만 아니라 현장의 불확실한 조건들을 감수해야 한다. 본 연구에서는 온도응력을 실내에서 직접적으로 측정할 수 있는 시험장치를 개발하였다. 개발된 온도응력 시험장치는 콘크리트와 다른 열팽창계수를 갖는 재료를 이용하여 실제 구조물에서 발생할 수 있는 콘크리트의 내/외부 구속에 의한 온도응력의 변화를 구현할 수 있으며, 이를 정량적으로 예측할 수 있다. 실험은 해석을 통해 얻은 온도이력을 구현할 수 있는 항온항습조에서 수행하였고, 온도응력은 장비에 부착된 변형률게이지를 통해 얻은 변형률을 이용하여 계산하였다. 개발된 장비의 검증을 위해 매립게이지를 이용하여 온도응력을 측정하는 실험을 동시에 수행하였고, 이 결과에 의하면 개발된 시험장치는 불확실한 콘크리트의 초기재령 물성치를 고려하여 보다 정확하게 온도응력을측정할 수 있으며, 검증실험 결과에 의해 그 객관성과 타당성을 입증할 수 있었다.

스트레인 게이지를 이용한 패키지 재료의 열팽창계수 측정 (Measurement of Thermal Expansion Coefficient of Package Material Using Strain Gages)

  • 양희걸;주진원
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.37-44
    • /
    • 2013
  • 유연 솔더가 실장된 패키지와 무연 솔더가 실장된 패키지의 온도에 따른 변형 거동은 솔더 자체의 물성치 뿐만 아니라 패키지를 구성하는 재료의 물성치에도 큰 영향을 받는다고 알려져 있다. 본 논문에서는 스트레인 게이지의 온도특성을 이용하여 미지 재료의 열팽창계수를 결정하는 방법을 정립하고, 반도체 패키지 몰딩 화합물의 열팽창계수를 실험적으로 구하였다. 탄소강과 알루미늄 시편을 기준 시편으로 사용하고 스트레인 게이지 측정을 통하여 온도에 따른 유연 솔더용 몰딩 화합물과 무연 솔더용 몰딩 화합물의 열팽창계수를 구하고, 무아레 간섭계를 이용하여 비접촉적으로 열팽창 계수를 측정하여 결과를 비교하였다. 기준 시편에 따른 두 가지 스트레인 게이지 실험 결과와 무아레 실험 결과가 잘 일치하여서 실험방법에 신뢰성이 있는 것을 보였다. 유연 솔더용 몰딩 화합물의 경우에는 열팽창계수가 온도에 관계없이 약 $15.8ppm/^{\circ}C$로 측정되었고, 무연 솔더용의 경우에는 $100^{\circ}C$이하의 온도에서 몰딩 화합물의 열팽창계수는 약 $9.9ppm/^{\circ}C$이었으나 $100^{\circ}C$이상에서는 온도가 증가함에 따라 열팽창계수가 급격하게 증가되어 $130^{\circ}C$에서는 $15.0ppm/^{\circ}C$의 값을 가졌다.

Studies on Properties with Different Filler and Content in Pb-free Sealing Frit for Electronic Devices

  • 안용태;최병현;지미정;장우석;이준호;황해진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.181-181
    • /
    • 2009
  • 전자부품용 Pb-free sealing frit의 열팽창계수를 기판에 matching 시키기 위하여 음의 열팽창계수를 가지고 있는 $\beta$-Eucryptite, $\beta$-Spodumene를 합성하여 filler로 첨가하였다. 합성된 filler는 저온소성용 유리프리트의 높은 열팽창계수를 조절하기 용이하고, 유리프리트와 복합화 하여 소성하면 낮은 열팽창계수로 인한 우수한 열충격 저항성을 갖는다. Filler로써 $\beta$-Eucryptite, $\beta$-Spodumene의 결정성을 향상시키기 위해 $1250^{\circ}C$에서 5 시간 동안 유지하는 합성공정을 3회 반복 진행한 후 XRD를 사용하여 결정성을 분석하였고, TMA를 이용하여 filler 첨가량에 따른 유리프리트의 열팽장계수의 변화를 측정하였다. 또한, filler 입도와 함량에 따른 melting 특성을 분석하기 위해 Pill test를 진행하였으며, soda-lime glass 기판과의 접합면을 SEM을 사용하여 관찰하였다.

  • PDF