• Title/Summary/Keyword: 열팽창계수 측정

Search Result 132, Processing Time 0.028 seconds

Measurement of Thermal Expansion Coefficient of Poly-Si Thin Film Using Microgauge (마이크로 게이지를 이용한 다결정 샐리콘 박막의 열팽창 계수 측정)

  • Chae, Jeong-Heon;Lee, Jae-Yeol;Gang, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 1998
  • 인이 높은 농도로 도핑되어진 LPCVD 다결정 실리콘 박막의 열팽창 계수를 마이크로 게이지법을 이용하여 측정하였다. 기존의 박막의 열팽창 계수 측정 법에서는 박막이 기판에 증착되어진 상태에서 측정이 이루어지므로, 기판의 탄성계수와 열팽창계수를 미리 알고 있어야 한다. 이에 비해 마이크로 게이지법에서는 박막의 열\ulcorner창 계수를 도출하기 위하여 기판의 탄성계수 값과 열팽창 계수 값을 필요로 하지 않는다는 장점이 있다. 마이크로 게이지법에서는 전류를 가할 경우 줄 발열에 의해 발생한 마이크로 게이지에의 변위를 측정하고, 그 때 계산된 마이크로 게이지의 평균 온도의 관계에서 열팽창 계수를 계산한다. 다결정 실리콘 박막의 열팽창 계수는 2.9 x $10^{-6}$$^{\circ}C$로 측정되었으며, 이 값들의 표준편차는 0.24x$10^{-6}$$^{\circ}C$였다.

  • PDF

Measurements of Thermal Expansion Coefficients in GRP Pipe (GRP 복합관의 열팽창계수 측정)

  • Oh, Jin-Oh;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.26-30
    • /
    • 2012
  • This study was focused on the measurement of thermal expansion coefficients for GRP pipe through strain gage circuits. First of all, thermal expansion coefficients of aluminum beam were measured to examine the validity of the suggested method by using various types of strain gage circuits. Thermal expansion coefficients of GRP pipes along axial and hoop directions were measured to investigate the effect of the location of strain gages, number of repeated measurements, and strain gage types with different thermal expansion coefficients on the thermal strains and the repeatability of measured results. According to the results, thermal expansion coefficients of GRP pipes along hoop direction were lower than those along axial direction due to the constraint effect of reinforced glass fibers on thermal strains along hoop direction. As measurements were repeated, thermal expansion coefficients of GRP pipes were slightly increased, but the degree of increase became smaller. Finally, the same thermal expansion coefficients were obtained irrespective of different types of strain gages with different thermal expansion coefficients if thermal strains of strain gages were compensated by using reference compensation specimen.

Measurement and Evaluation of Thermal Expansion Coefficient for Warpage Analysis of Package Substrate (패키지 기판의 Warpage 해석을 위한 열팽창계수의 측정 및 평가)

  • Yang, Hee Gul;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1049-1056
    • /
    • 2014
  • Microelectronics components contain various materials with different coefficients of thermal expansion (CTE). Although a large amount of published data on the CTE of standard materials is available, it occasionally becomes necessary to measure this property for a specific actual material over a particular temperature range. A change in the temperature of a material causes a corresponding change in the output of the strain gage installed on the specimen because of not only the mechanical load but also the temperature change. In this paper, a detailed technique for CTE measurement based on these thermal characteristics of strain gages is proposed and its reliability is evaluated. A steel specimen, aluminum specimen, and copper specimen, whose CTE values are well known, were used in this evaluation. The proposed technique was successfully applied to the measurement of the CTE of a coreless package substrate composing of electronics packages.

Design of High-precision CTE measurement System for the Structural Materials in Space Applications (우주용 구조 재료의 초정밀 열팽창계수 측정시스템 설계)

  • Kim, Hong-Il;Han, Jae-Hung;Yang, Ho-Soon;Cho, Chang-Rae;Cho, Hyok-Jin;Kim, Hong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.916-922
    • /
    • 2008
  • Structures being used in space environment, should be designed to have minimum CTE(coefficient of thermal expansion) for the dimensional stability. Accurate CTE data of the materials are required to design the space structures consisting of various materials. There are uncertainties in the characteristics of materials even though the same manufacturing processes are applied. Therefore, it is needed to measure the thermal deformation of not only the material specimen but also substructures in simulated space environment, such as high vacuum condition. In this research, therefore, precise CTE measurement system using displacement measuring interferometer and vacuum chamber has been designed with uncertainty analysis of the measurements. This system can be used to measure the CTE of the specimen or thermal expansion of the substructure with varying size up to 50cm in length. To measure the low CTE material, overall uncertainty of this system is expected under 0.01ppm/K.

Characterization of Thermal Expansion Coefficients of Carbon/Epoxy Composite for Temperature Variation (탄소섬유 복합재료의 온도변화에 대한 열팽창계수 특성 변화 규명)

  • 김주식;윤광준
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • The change of the coefficients of thermal expansion(CTE) of Carbon/Epoxy was investigated for the temperature variation and a prediction model for the change of CTE was proposed. Elastic properties and CTEs in the principal material directions were measured in the range of room temperature to cure temperature and characterized as functions of temperature. By applying the characterized properties to the classical lamination theory, a computational method to predict the change of CTEs of a general laminate for temperature variation was proposed. the coefficients of thermal expansion of laminates with various stacking sequences were measured and compared with those predicted. Good agreements between the predicted results and the experimental data show that the c hanges of CTEs of a general laminate for temperature variation can be predicted well by using the proposed method.

  • PDF

Measurement of the Early-Age Coefficient of Thermal Expansion and Drying Shrinkage of Concrete Pavement (콘크리트포장의 초기 열팽창계수 및 건조수축 측정 연구)

  • Yoon, Young-Mi;Suh, Young-Chan;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.117-122
    • /
    • 2008
  • Quality control of the concrete pavement in the early stage of curing is very important because it has a conclusive effect on its life span. Therefore, examining and analyzing the initial behavior of concrete pavement must precede an alternative to control its initial behavior. There are largely two influential factors for the initial behavior of concrete pavement. One is the drying shrinkage, and the other is the heat generated by hydration and thermal change inside the pavement depending on the change in the atmospheric temperature. Thus, the coefficient of thermal expansion and drying shrinkage can be regarded as very important influential factors for the initial behavior of the concrete. It has been a general practice up until now to measure the coefficient of thermal expansion from completely cured concrete. This practice has an inherent limitation in that it does not give us the coefficient of thermal expansion at the initial stage of curing. Additionally, it has been difficult to obtain the measurement of drying shrinkage due to the time constraint. This research examined and analyzed the early drying shrinkage of the concrete and measurements of the thermal expansion coefficients to formulate a plan to control its initial behavior. Additionally, data values for the variables of influence were collected to develop a prediction model for the initial behavior of the concrete pavement and the verification of the proposed model. In this research, thermal expansion coefficients of the concrete in the initial stage of curing ranged between $8.9{\sim}10.8{\times}10^{-6}/^{\circ}C$ Furthermore, the effects of the size and depth of the concrete on the drying shrinkage were analyzed and confirmed.

  • PDF

Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer-Sized SiO2 Particle-Reinforced Epoxy Composites (마이크로미터 크기 실리카 입자로 강화된 에폭시 복합재료의 열팽창계수 측정 및 평가)

  • Jo, Hyu Sang;Kang, Hee Yong;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.129-135
    • /
    • 2015
  • In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix.

Development of Thermal Stress Measuring System (온도응력 측정용 시험장치의 개발)

  • 전상은;김국한;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.228-236
    • /
    • 2001
  • Even though numerous researches have been performed for the prediction of thermal stresses in mass concrete structures by both analytical and experimental means, the limitations exist for both approaches. In analytical approach, the fundamental limitation is derived from the difficulty of predicting concrete properties such as modulus of elasticity, coefficient of thermal expansion, etc.. In experimental approach, there are many uncertainties related to in-situ conditions, because a majority of researches have focused on measuring thermal stresses in actual and simulated structures. In this research, an experimental device measuring thermal stresses directly in a laboratory setting is developed. The equipment is located in a temperature chamber that follows the temperature history previously obtained from temperature distribution analysis. Thermal strains are measured continuously by a strain gauge in the device and the corresponding thermal stresses are calculated simply by force equilibrium condition. For the verification of the developed device, a traditional experiment measuring thermal strains from embedded strain gauges is performed simultaneously. The results show that the thermal strain values measured by the newly developed device agree well with the results from the benchmark experiment.

Measurement of Thermal Expansion Coefficient of Package Material Using Strain Gages (스트레인 게이지를 이용한 패키지 재료의 열팽창계수 측정)

  • Yang, Hee-Gul;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • It is well known that thermal deformation of electronic packages with Pb-Sn solder and with lead-free solder is significantly affected by material properties consisting the package, as well as those of the solder itself. In this paper, the method for determining coefficient of thermal expansion(CTE) of new material is established by using temperature characteristic of strain gages, and the CTE of molding compound are obtained experimentally. The temperature-dependent CTE of molding compound for Pb-Sn solder and that for lead-free solder are obtained by using strain measurements with well known steel specimen and aluminium specimen as reference specimens, and the CTE's are also measured non-contactly by using moire interferometry. Those results are compared, and the agreement between the two types of strain gage experiment and the moire experiment show the strain gage method used in this paper to be reliable. In the case of the molding compound for Pb-Sn solder, the CTE is measured as approximately $15.8ppm/^{\circ}C$ regardless of the temperature. In the case for the lead-free solder, the CTE is measured as of approximately $9.9ppm/^{\circ}C$ below the temperature of $100^{\circ}C$, and then the CTE is increased sharply depending on the temperature, and reaches to $15.0ppm/^{\circ}C$ at $130^{\circ}C$.

Studies on Properties with Different Filler and Content in Pb-free Sealing Frit for Electronic Devices

  • An, Yong-Tae;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Jang, U-Seok;Lee, Jun-Ho;Hwang, Hae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.181-181
    • /
    • 2009
  • 전자부품용 Pb-free sealing frit의 열팽창계수를 기판에 matching 시키기 위하여 음의 열팽창계수를 가지고 있는 $\beta$-Eucryptite, $\beta$-Spodumene를 합성하여 filler로 첨가하였다. 합성된 filler는 저온소성용 유리프리트의 높은 열팽창계수를 조절하기 용이하고, 유리프리트와 복합화 하여 소성하면 낮은 열팽창계수로 인한 우수한 열충격 저항성을 갖는다. Filler로써 $\beta$-Eucryptite, $\beta$-Spodumene의 결정성을 향상시키기 위해 $1250^{\circ}C$에서 5 시간 동안 유지하는 합성공정을 3회 반복 진행한 후 XRD를 사용하여 결정성을 분석하였고, TMA를 이용하여 filler 첨가량에 따른 유리프리트의 열팽장계수의 변화를 측정하였다. 또한, filler 입도와 함량에 따른 melting 특성을 분석하기 위해 Pill test를 진행하였으며, soda-lime glass 기판과의 접합면을 SEM을 사용하여 관찰하였다.

  • PDF