• Title/Summary/Keyword: 열차진동

Search Result 294, Processing Time 0.025 seconds

Dynamic Analysis of Floating Slab Isolation System for Train (철도 방진 슬라브 궤도의 동특성 해석)

  • Han, Hyun-Hee;Lee, Gyu-Seop;Jang, Seung-Yup;Park, Man-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.819-822
    • /
    • 2009
  • 환경 소음,진동 개선의 측면에서 철도 레일 하부로 전달되는 진동 및 구조소음을 효과적으로 차단하기 위하여 국내에서도 탄성 이산지지 구조의 플로팅 슬라브를 적용하는 경우가 증가하고 있다. 플로팅 슬라브 구조설계에 있어 주안점은 방진효율 증대와 슬라브 자체 중량의 2~3배 되는 열차 주행간의 동하중에 대한 열차 주행 안정성을 고려해야 하는 점이며 열차의 고속화 경향에 따라 동하중의 증가는 더욱 커지고 있다. 본 연구에서는 이산지지 방진장치를 적용한 철도 슬라브 궤도의 동특성과 이동질량에 의한 응답을 방진장치의 지지 간격, 스프링 상수 등을 설계변수로 하여 수치해석적 방법으로 시뮬레이션하였다.

  • PDF

Vibrational Characteristics of Buried Gas Pipelines under Train Moving Loads (열차 이동하중에 의한 지중 매설 가스 배관의 진동 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Sun, Jin-Sun;Kim, Mi-Seung;Dang, N.Hai
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Recently, the vibration of underground structure due to high speed railway loads has been increased substantially as compared with middle and slow speed. The buried gas pipelines under continuous impact forces and repeated loading are more influenced by the vibrational loads than another pipelines. However, the static analysis was not enough to allow for the effect of vibrations because it uses impact factors for the design or analysis process. In this study, characteristics of Pipelines was quantitatively estimated through each conditions of soil covers and train speed, and the new vibration prediction is presented about the vibrational velocity.

  • PDF

A Study on the Vibration Characteristics of Subway Structure by Train Load (열차 하중에 의한 지하철 구조물의 진동 특성에 관한 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.107-115
    • /
    • 2011
  • In this study, the vibration analysis of the underground box structures induced train movement is studied. In order to perform these analysis, dynamic data, which was measured when subway is in service, are gained by attaching accelerometers on the structure such as lower beam, lateral wall and upper slab. Also, accelerometers are attached on the lower beams and side walls of the gravel ballast and concrete ballast sections in order to compare vibration due to ballast materials. The vibration results of upper slabs and lower beams reveal that the vibration on the upper slabs is greater than the lower beams. Also, the results of the crack gauge on the upper slab show that crack width dose not change due to vibration, These means that the effect of the vibration on the structure is very limited. In order to evaluate the vibration of the structure, acceleration unit is converted to velocity unit comparing with the existing velocity data gained from the platforms.

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.

고속철도에서의 진동 및 그 대책

  • 신종서;이희현;양신추
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.103-111
    • /
    • 1993
  • 본 글에서는 건설기술자의 입장에서, 고속철도에서 발생하는 진동현상 및 그 대책에 대해 개략적으로 살펴보았다. 불행히도 현재까지 고속철도 진동에 관한 국내 연구는 거의 전무한 실정이어서, 여기서 제시된 대부분의 자료는 현재 고속 철도가 운행되고 있는 선진외국에서 수행한 연구결과를 인용한 것이다. 그러나 진동 문제는 열차 고속화를 추진함에 있어서 반드시 해결해야 될 주요과제의 한 분임을 감안하여, 공단에서는 열차가 350 km/h까지 주행시 고속철도에서 발생하는 진동을 예측하고, 이에 대한 대책을 강구하기 위한 연구를 적극적으로 추진하고 있으며, 진동문제외에 소음, 승차감, 탈선계수, 공기동력학 등 고속철도 및 일반철도의 고속 화와 관련된 제반연구를 단계적으로 추진하고 있다. 이러한 기회를 통하여 독자들에 게 고속철도에 관한 지대한 관심을 가지고, 다방면에서의 기술협조 및 정보교환을 간곡히 요청하는 바이다.

  • PDF

A Study on the Lateral Vibration Reduction of the High-speed Electric Multiple Unit (동력분산형 고속열차의 횡방향 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Park, Joon-Hyuk;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.797-803
    • /
    • 2019
  • This study was carried out to reduce the lateral vibration of high-speed electric multiple units. In the study, the high-speed electric multiple unit prototype (HEMU-430X) has a high lateral vibration at low equivalent conicity regardless of the wheel profiles (XP55, GV40, S1002). As wheel wear progresses and the equivalent conicity increases, the lateral vibration tends to decrease. The reason is that a combination of the suspension characteristics causes the body and bogie to resonate at a frequency of 1.4 Hz when the equivalent conicity is low, resulting in body hunting. An investigation of the lateral vibration of overseas high-speed trains showed that a decrease in the hydraulic stiffness of the yaw damper could improve the vibration. The series stiffness of the yaw damper is a combination of the hydraulic stiffness and elastic joint. In this study, an attempt was made to improve the lateral vibration by lowering the stiffness of the elastic joint. The series stiffness of the adjusted yaw damper was approximately 60% compared to the original one. The on track test results showed improvement in the lateral vibration for both running directions. The vibration reduction method of this study can be used for EMU-250 and EMU-320 in future commercial operations.

A study on the Dynamic Behavior Enhancement of the Korean High-speed Train (고속열차의 주행동특성 개선에 관한 연구)

  • Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.81-87
    • /
    • 2017
  • This paper describes the dynamic behavior and enhancement of Korean high-speed trains. The tail vibration reduction method of the yaw damper installation method change, which was derived from previous research, was applied to the running test of high-speed train. In addition, the vibration reduction method for the entire vehicle was derived by a numerical method and its effect was confirmed by a running test. The improved design was applied to the double-deck high-speed train coaches and the commissioning proceeded without problems in dynamic behavior. Sensitivity analysis of the suspension parameters affecting the critical speed of Korean next-generation high-speed trains was performed and four design variables that greatly affected the critical speed were derived. These were in the order of the primary elastic joint x-directional stiffness, the secondary yaw damper series stiffness, the secondary lateral damper damping coefficient, and the carbody damper damping coefficient. By optimizing the design variables, the suspension parameter that improves the critical speed by 23.3% can be used in the commercial designs of Korean next-generation high-speed trains.

The Running Vibration Assessment of Daegu Metropolitan Transit using Smartphone Acceleration Sensor (스마트폰 가속도센서를 이용한 대구도시철도 주행진동평가)

  • Kwon, Dong-Hee;Jang, Sung-Hyun;Mun, Hyung-Jin;Chey, Min-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.179-184
    • /
    • 2019
  • Recently, various problems have arisen due to the popularization and aging of urban railway transit, which is the key transportation of large cities. In this study, the vibrational accelerations for the Daegu Metropolitan City Urban Railway(Line 1) were measured and evaluated using the smartphone built-in acceleration sensor and the approved application. For this purpose, the three axes running accelerations were measured according to the domestic standard (KS R 9160), and the acceleration data along the 32 stations (3 directions) were analyzed and compared. In addition, the increasing of acceleration values caused by the change of vibrational environment was monitored along the main stations between the time in 1997 and 2017. It was found that there are considerable increase of lateral and vertical directional accelerations due to the aging of railway facility environment for the last 20 years. The results of this study have valuable means for evaluating the ride quality of urban railway and the vibration influence on surrounding structures.

A study on the Vibration Reduction of the Commercial High-speed Train (운영 중인 고속열차의 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Choi, Sunghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.697-704
    • /
    • 2017
  • This study was carried out to investigate and alleviate the vibration problem of commercial high-speed trains. First, the measurement of the carbody vibration was performed, in order to determine the vibration level of the high-speed train. The measurement result showed that the vibration level of the driver cab was higher than that of the passenger car and that the vibration became bigger toward the trailing end of the train. The vertical vibration of the driver cab and passenger car was larger than the transverse vibration, and the maximum value of the vibration in the ballast section was larger than that in the concrete section. A dynamic analysis was carried out to improve the vibration of the KTX-Sancheon train. The results of the analysis showed that it is necessary to reduce the vibration of the driver cab and both ends of the passenger cars. To reduce the vibration of the driver cab, it was recommended that the stiffness of the secondary coil spring be reduced and the damping coefficient of the secondary vertical damper be increased. It was found that the failure of the suspension system could be the origin of the vibration problem of the high-speed train. The proper management of wheel wear plays an important role in the improvement of the operation efficiency and reduction of the carbody vibration of high-speed trains, and research is underway to change the present wheel profile to increase the mileage between wheel turning.

고속철도의 선로구축물의 소음ㆍ진동저감대책

  • 양신추;김태욱;강윤석
    • Journal of KSNVE
    • /
    • v.14 no.2
    • /
    • pp.26-34
    • /
    • 2004
  • 현재 철도는 기술의 발전과 함께 초고속 대량수송, 정시성, 안전성, 에너지효율성 및 친환경성 등의 장점을 가지는 새로운 교통수단으로 재조명되고 있다. 국내에서도 고속철도 개통과 G7고속열차의 개발 등으로 철도기술은 제 2의 도약기에 들어서고 있으며, 특히 도로교통망의 포화로 인해 철도건설수요가 계속적으로 증가할 것으로 기대되는데, 기존 수송량의 흡수 및 장기적인 관점에서 철도교통망의 확장을 도모하기 위해서는 열차의 중량화와 고속화가 제반기술의 발전과 함께 지속적으로 추진될 것으로 판단된다. 그러나 이러한 차량의 중량화와 고속화는 실질적으로 선로 주변에 발생되는 소음 및 진동의 크기를 증가시키게 되는데, 최근 들어 소음 및 진동관련 환경기준의 강화와 민원의 증가 등으로 인해 친환경적인 측면에서 적극적인 소음 진동 저감대책의 수립과 관련 기술의 적용이 요구되고 있는 상황이다.(중략)