• Title/Summary/Keyword: 열차동역학

Search Result 46, Processing Time 0.18 seconds

Prediction of Optimal Catenary Tension by Dynamic Characteristic Measurement and Dynamic Analysis of Pantograph in High-Speed Train (고속열차 팬터그래프 동특성 측정 및 동역학 해석을 통한 최적 전차선 장력 예측)

  • Oh, Hyuck Keun;Yoo, Geun-Jun;Park, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.350-356
    • /
    • 2018
  • The contact force, which is the dynamic interaction between the pantograph and the catenary, is an important indicator for evaluating the current collecting quality, which is a stable power supply characteristic to the vehicle. In this study, dynamic contact force characteristics of pantograph of HEMU-430X vehicle, which is a power-distributed high-speed train test vehicle, were analyzed according to the catenary tension and compared with the analytical results using the pantograph-catenary interaction model. As a result of comparing the test results with the analytical results, it was confirmed that the average contact force and the standard deviation of the contact force, which are the main dynamic contact force characteristics, coincide relatively well. Using the analytical model, the relationship between the catenary tension and the contact force is presented according to the vehicle speed, and the optimal catenary tension for each operation speed is presented and compared with the international standard. As a result, it was found that the results obtained from the analysis are comparable to those recommended by international standards.

Study of Influence of Wheel Unloading on Derailment Coefficient of Rolling Stock (철도차량의 윤중 감소가 탈선계수에 미치는 영향 연구)

  • Koo, Jeong Seo;Oh, Hyun Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • A new theoretical derailment coefficient model of wheel-climb derailment is proposed to consider the influence of wheel unloading. The derailment coefficient model is based on the theoretical derailment model of a wheelset that was developed to predict the derailment induced by train collisions. Presently, in domestic derailment regulations, a derailment coefficient of 0.8 is allowable using Nadal's formula, which is for a flange angle of $60^{\circ}$ and a friction coefficient of 0.3. However, theoretical studies focusing on different flange angles to justify the derailment coefficient of 0.8 have not been conducted. Therefore, this study theoretically explains a derailment coefficient of 0.8 using the proposed derailment coefficient model. Furthermore, wheel unloading of up to 50% is accepted without a clear basis. Accordingly, the correlation between a wheel unloading of 50% and a derailment coefficient of 0.8 is confirmed by using the proposed derailment coefficient model. Finally, the validity of the proposed derailment coefficient model is demonstrated through dynamic simulations.

Fatigue Analysis of Reduction Gears Unit in Rolling Stock Considering Operating Characteristics (운행특성을 고려한 철도차량 감속기의 피로해석)

  • Kim, Chul-Su;Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1085-1090
    • /
    • 2011
  • To assure the safety of rolling stock, it is important to perform the fatigue analysis of reduction gear unit in rolling stock considering a variation of velocity and traction motor capability. This paper presents fatigue analysis of the damage of reduction gear unit of railway vehicle under variable amplitude loading(VAL) based on quasi-static fatigue analysis using finite element model and linear Miner's rule. The VAL for the simulation was constructed from the tractive effort curve and train run curves of railway vehicle under commercial operation condition using MSC.ADAMS dynamic analysis. The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the middle gear based on strain-life based approach. The results showed that the frequent high starting torque due to a quick start as well as increasing numbers of stops at station would decrease the fatigue life of reduction gear unit.

Analysis of the Current-Collection Performance of a High-Speed Train Using Finite Element Analysis Method (유한 요소 해석 기법을 이용한 고속 철도 차량의 집전 성능 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Park, Chan-Kyoung;Paik, Jin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.827-833
    • /
    • 2011
  • In this study, a simulation model to estimate the current-collection performance of a high-speed train was developed by using a commercial finite element analysis software, SAMCEF. A three-dimensional springDdamperDmass model of a pantograph was created, and its reliability was validated by comparing the receptance of the model to that of the actual pantograph. The wave propagation speed of the catenary model was compared with the analytical wave propagation speed of the catenary system presented in the UIC 799 OR standard. The length of the droppers was controlled, and the pre-sag of the contact wire due to gravity was considered. The catenary and the pantograph were connected by using a contact element, and the contact force variation when the pantograph was moved at velocities of 300 km/h and 370 km/h was obtained. The average, standard deviation, maximum, and minimum values of the contact force were analyzed, and the effectiveness of the developed simulation model was examined.

A Study on the Dynamic Behavior of the High Speed Railway Tracks (고속철도(高速鐵道)의 궤도(軌道)에 대한 동특성(動特性) 연구(研究))

  • Moon, Je Kil;Kang, Kee Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 1992
  • The purpose of this study is to provide the cause and countermeasure for track problems in the high speed railways due to the irregularly increasing dynamic wheel loads running over the speed range of 300 km/h. It has long been recognised that the track problems encountered on high speed railways are associated mainly with vertical dynamic loads which are related to the unsprung mass of vehicles and track irregularities. In addition to these parameters for the estimation of the dynamic wheel load variation, however, the dynamic characteristics of track structures are discussed in this paper with reference to mathematical modelling of the tracks and vehicle. From the results of the more detailed analyses, the effects of track stiffness and damping characteristics are considered to be significant for reducing the dynamic wheel loads. To make this point clear and appraise the overall performance of the track components, the theoretical analysis on the dynamic behavior of the tracks and wheel set impact tests on several track structures are performed. The experimental results from different track components are compared with each other. The track stiffness and damping characteristics are also presented quantatively.

  • PDF

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.