• Title/Summary/Keyword: 열차동력운전 분산

Search Result 2, Processing Time 0.017 seconds

A Model and Approaches for Smoothing Peaks of Traction Energy in Timetabling (동력운전 분산 시각표 작성을 위한 수리모형 및 해법)

  • Kim, Kyung-Min;Oh, Seog-Moon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1018-1023
    • /
    • 2009
  • This paper describes a reduction in the peaks of traction energy for metro railways in timetabling. We develope a mixed integer programming (MIP) model, which minimizes the number of trains running simultaneously. We suggest two approaches. In the first approach, we use the commercial MIP solver, CPLEX. In the second approach, we propose a heuristic algorithm. We apply both methods to the current daily timetable of the Korea Metropolitan Subway. We determine an optimal solution, which results in an improvement of approximately 25% over the current timetable.

A Study on the Lateral Vibration Reduction of the High-speed Electric Multiple Unit (동력분산형 고속열차의 횡방향 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Park, Joon-Hyuk;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.797-803
    • /
    • 2019
  • This study was carried out to reduce the lateral vibration of high-speed electric multiple units. In the study, the high-speed electric multiple unit prototype (HEMU-430X) has a high lateral vibration at low equivalent conicity regardless of the wheel profiles (XP55, GV40, S1002). As wheel wear progresses and the equivalent conicity increases, the lateral vibration tends to decrease. The reason is that a combination of the suspension characteristics causes the body and bogie to resonate at a frequency of 1.4 Hz when the equivalent conicity is low, resulting in body hunting. An investigation of the lateral vibration of overseas high-speed trains showed that a decrease in the hydraulic stiffness of the yaw damper could improve the vibration. The series stiffness of the yaw damper is a combination of the hydraulic stiffness and elastic joint. In this study, an attempt was made to improve the lateral vibration by lowering the stiffness of the elastic joint. The series stiffness of the adjusted yaw damper was approximately 60% compared to the original one. The on track test results showed improvement in the lateral vibration for both running directions. The vibration reduction method of this study can be used for EMU-250 and EMU-320 in future commercial operations.