• Title/Summary/Keyword: 열차단 코팅

Search Result 12, Processing Time 0.017 seconds

Analysis of Degradation Mechanism for Single Crystal Blade and Vane in Gas Turbine (가스터빈 단결정 블레이드 및 베인의 손상거동 분석)

  • Song, Kyu-So;Kim, Doo-Soo;Lee, Han-Sang;Yoo, Keun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.549-554
    • /
    • 2011
  • Recently, technical advances have been made in high efficiency gas turbine power plants. In domestic gas turbine facilities, the material properties of the blade and vane are degraded by the daily start-stop operations arising from the thermo mechanical cycle. We surveyed the time dependent degradation of the HP blade and vane to gather basic data for life assessment and damage analysis. The EOH(equivalent operating hours) of the blades were 23,686, 27,909, and 52,859 and the EOH of the vanes were 28,714 and 52,859, respectively. With increased operating hours, the shape of the primary ${\gamma}$' precipitate transformed from cubic to spherical, and its average size also increased. The leading edge area of the blades and the center of the vanes had the worst morphology, and this tendency agrees with the microhardness results. The thickness of the thermally grown oxide at the outer surface of the bond coat increased with increased operating hours.

Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint (나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성)

  • Kim, Dae Won;Ma, Young Kil;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Fe2O3 nanoparticles with the mixed structure of cubic and nanorod were synthesized by precipitation, hydrothermal, sol-gel method, etching process and heat treatment. Fe2O3/TiO2 core-shell (CS) of type Fe2O3@TiO2 composite was fabricated on a 20 nm nanolayer of TiO2 coated on the surface of Fe2O3 nanoparticles. Fe2O3/TiO2 yolk-shell (YS) composite was prepared by chemical etching and heat treatment of Fe2O3/TiO2 CS nanoparticles. Physical properties of Fe2O3, Fe2O3@TiO2 CS and Fe2O3@TiO2 YS nanoparticles were characterized by FE-SEM, HR-TEM and X-ray diffraction. The solar reflectance, commission internationale de l'Elcairage (CIE) color coordinate and heat shield temperatures of Fe2O3, CS and YS type Fe2O3@TiO2 pigments filled with poly acrylate (PA) paints were investigated by UV-Vis-NIR spectrometer and homemade heat shield temperature measuring device. The Fe2O3@TiO2 YS red pigment filled PA composite exhibited excellent near infrared light reflecting performance and also reduced the heat shield temperature of 13 ℃ than that of Fe2O3 filled counterparts.