• Title/Summary/Keyword: 열차단막

Search Result 5, Processing Time 0.018 seconds

우주발사체 재진입모듈에 적용되는 열차단막 형상에 따른 특성연구

  • Park, Jin-Su
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.49-54
    • /
    • 2016
  • 본 연구에서는 유/무인 우주발사체의 재진입모듈에 적용되는 Heat-Shield(열차단막)의 형상에 따른 유동특성을 수치해석으로 분석했다. 재진입모듈이 지구의 대기권을 다시 진입하는 환경(고도 70km)을 기준으로 해석을 진행했다. 열차단막의 형상은 평판, 곡률이 다른 타원으로 나누었으며, 각 형상별 유동특성을 확인했다. 결론적으로 재진입 모듈의 형상에 따라 압력과 속도분포를 기준으로 열적인 분포를 예상했으며, 계산된 항력계수를 비교했다. 단순한 유동으로 열적 분포를 예상한 것에 한계가 있지만 대기권 재진입 모듈의 2차원 설계에 도움이 될 형상기준을 제시했다. 수치해석은 모두 Edison_CFD에서 제공하는 툴을 이용해 수행했으며, 전처리에는 e-mega (structured)을 후처리에는 e-dava를 이용했다. 해석 solver는 '정렬격자기반 2차원 압축성 유동 범용해석 소프트웨어'를 이용했다.

  • PDF

Development and Validation of Cryopanel Cooling System Using Liquid Helium for a Satellite Test (액체헬륨을 이용한 위성시험용 극저온패널 냉각시스템 개발 및 검증)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lee, Sang-Hoon;Hong, Seok-Jong;Choi, Seok-Weon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • A cooling system utilizing liquid helium to chill the cryopanel (800 mm $\times$ 700 mm dimensions) down to 4.2 K was designed, implemented, and tested to verify the role of the cryopanel as a heat sink for the payload of a spacecraft inside the large thermal vacuum chamber (effective dimensions : 8 m ($\Phi$) $\times$ 10 m (L)) of KARI (Korea Aerospace Research Institute). Two LHe (Liquid Helium) Dewars, one for the main supply and the other for refilling, were used to supply liquid helium or cold helium gas into this cryopanel, and flow control for the target temperature of the cryopanel within requirements was done through fine adjustment of the pressure inside the LHe Dewars. The return helium gas from the cryopanel was reused as a thermal barrier to minimize the heat influx on the core liquid helium supply pipe. The test verified a cooling time of around three hours from the ambient temperature to 40 K (combined standard uncertainty of 194 mK), the capacity for maintaining the cryopanel at intermediate temperatures, and a 1 K uniformity over the entire cryopanel surface at around 40 K with 20 W cooling power.

AC-DC Transfer Characteristics of a Bi-Sb Multijunction Thermal Converter (Bi-Sb 다중접합 열전변환기의 교류-직류 변환 특성)

  • 김진섭;이현철;함성호;이종현;이정희;박세일;권성원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.46-54
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter, which is consisted of a linear or bifilar thin film NiCr-heater and a thin film Bi-Sb thermopile, has been fabricated, and its ac-dc transfer characteristics were examined in a frequency range from 10 Hz to 10 KHz. In order to increase the thermal sensitivity and to decrease the ac-dc transfer error of a thermal converter, the heater and the hot junctions of a thermopile were prepared on a Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-diaphragm which acts as a thermal isolation layer, and the cold junctions on the Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-thin film supported with the silicon rim which functions as a heat sink. The respective thermal sensitivities in air and in a vacuum of the converter with a built-in bifilar heater were about 14.0 ㎷/㎽ and 54.0 ㎷/㎽, and the ac-dc voltage and the current transfer difference ranges in air were about $\pm$0.60 ppm and $\pm$0.11 ppm, respectively, indicating that the ac-dc transfer accuracy of the converter are much higher than that of a commercial 3-dimensional multijunction thermal converter. However, the output thermoelectric voltage fluctuation of the converter was rather high.

  • PDF

Chromel-Alumel Thermoelectric Flow Sensor Fabricated on Dielectric(Si3N4/SiO2/Si3N4) Membrane (유전체(Si3N4/SiO2/Si3N4)멤브레인 위에 제작된 크로멜-알루멜 열전 유량센서)

  • Lee, Hyung-Ju;Kim, Jin-Sup;Kim, Yeo-Hwan;Lee, Jung-Hee;Choi, Yong-Moon;Park, Se-Il
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.103-111
    • /
    • 2003
  • A chromel-alumel thermoelectric flow sensor using $Si_3N_4/SiO_2/Si_3N_4$ thermal isolation membrane was fabricated. Temperature coefficient of resistance of thin film Pt-heater was about $0.00397/^{\circ}C$, and Seebeck coefficient of chromel-alumel thermocouple was about $36\;{\mu}V/K$. The sensor showed that thermoelectric voltage decreased as thermal conductivity of gas increased, and $N_2$-flow sensitivity increased as heater voltage increased or the distance between heater and thermocouple decreased. When heater voltage was about 2.5 V, $N_2$-flow sensitivity and thermal response time of the sensor were about $1.5\;mV/sccm^{1/2}$ and 0.18 sec., respectively. Linear range in flow sensitivity of the flow sensor was wider than that of Bi-Sb flow sensor.

Characteristics of a planar Bi-Sb multijunction thermal converter with Pt-heater (백금 히터가 내장된 평면형 Bi-Sb 다중접합 열전변환기의 특성)

  • Lee, H.C.;Kim, J.S.;Ham, S.H.;Lee, J.H.;Lee, J.H.;Park, S.I.;Kwon, S.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.154-162
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter with high thermal sensitivity and small ac-dc transfer error has been fabricated by preparing the bifilar thin film Pt-heater and the hot junctions of thin film Bi-Sb thermopile on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-diaphragm, which functions as a thermal isolation layer, and the cold junctions on the dielectric membrane supported with the Si-substrate, which acts as a heat sink, and its ac-dc transfer characteristics were investigated with the fast reversed dc method. The respective thermal sensitivities of the converter with single bifilar heater were about 10.1 mV/mW and 14.8 mV/mW in the air and vacuum, and those of the converter with dual bifilar heater were about 5.1 mV/mW and 7.6 mV/mW, and about 5.3 mV/mW and 7.8 mV/mW in the air and vacuum for the inputs of inside and outside heaters, indicating that the thermal sensitivities in the vacuum, where there is rarely thermal loss caused by gas, are higher than those in the air. The ac-dc voltage and current transfer difference ranges of the converter with single bifilar heater were about ${\pm}1.80\;ppm$ and ${\pm}0.58\;ppm$, and those of the converter with dual bifilar heater were about ${\pm}0.63\;ppm$ and ${\pm}0.25\;ppm$, and about ${\pm}0.53\;ppm$ and ${\pm}0.27\;ppm$, respectively, for the inputs of inside and outside heaters, in the frequency range below 10 kHz and in the air.

  • PDF