• Title/Summary/Keyword: 열질식

Search Result 23, Processing Time 0.048 seconds

Forced Ignition Characteristics with a Plasma Jet Torch in Supersonic Flow (초음속 유동장 내 플라즈마 토치를 사용한 강제 점화 특성)

  • Kim, Chae-Hyoung;Jeung, In-Secuk;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.363-366
    • /
    • 2011
  • Mixing and combustion experiments with a vent slot mixer were performed in Mach 2 supersonic wind tunnel. Helium and hydrogen gases each were used for the mixing and the combustion experiment with a plasma jet (PJ) torch. The vent slot mixer holds plenty of fuel in the downstream mixing region, even though the fuel is transversely injected. In case of the combustion, the injected fuel is ignited by the PJ torch, and then unburned mixture is burned by shock-induced combustion downstream. Thermal choking in the combustor leads to shock trains in the isolator, causing the unstable combustion.

  • PDF

Conceptual Design of Rocket Based Combined Cycle Engine (Rocket Based Combined Cycle Engine의 개념설계 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.581-585
    • /
    • 2009
  • In this study, conceptual design of the RBCC (Rocket Based Combined Cycle) engine was performed for the hypersonic propulsion system development. For the flight mission, RBCC engine takes off at sea level and accelerates up to Mach 8 at the altitude of 30km. By the flight speed characteristics, operating pattern of the engine is categorized into 3 modes : Ejector jet (~Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). According to the engine mode characteristics, RBCC engine design and analysis was performed.

  • PDF

Supersonic Intake Design & Flow Control Analysis using Bleeding Condition (초음속 흡입구 형상 설계 및 Bleeding을 활용한 유동제어 연구)

  • Choe, Jae-Hwan;Cheon, So-Min;Kim, Jong-Am
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.77-80
    • /
    • 2012
  • 초음속 흡입구는 설계점에서 안정적으로 작동하지만 설계점 밖에서는 엔진성능이 급격히 감소하거나 층 격파 불안정 문제가 발생할 수 있다. 초음속 흡입구의 일반적인 특성을 파악하기 위해 2단 꺾임각을 갖는 외부 압축식 2차원 흡입구를 설계하고 EDISON_열유체 시스템을 이용하여 최종적으로 설계 마하수 2.5에서 작동하는 형상을 얻었다. 그러나 설계 마하수 이하의 영역에서는 충격파-경계층, 충격파간 상호작용으로 인해 유동에서 박리가 발생하고 최종적으로 흡입구 목을 질식시켜 아임계 상태로 천이된다. 이를 해결하기 위해 유동 제어 방법 중 하나인 bleeding을 이용하여 경계층을 제거하거나 유동의 박리를 방지하여 충격파를 cowl lip 전방에 안정하게 고정시킬 수 있었으며, 결과적으로 목적하였던 마하수 2.0에서 2.5에 이르는 작동 영역에서 강건하게 운용될 수 있는 초음속 흡입구를 설계하였다.

  • PDF

Effect of Soil Compaction Levels and Textures on Soybean (Glycine max L.) Root Elongation and Yield (토양 경반층 강도가 콩 뿌리신장 및 생육에 미치는 영향)

  • Jung, Ki-Yuol;Yun, Eul-Yoo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.332-338
    • /
    • 2012
  • Soil compaction is one of the major problems facing modern agriculture. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. This study was carried out evaluate of the effects soil texture and different compaction levels within the soil profile on the soybean root growth and productivity. The soybean plants were grown in $21cm{\o}{\times}30cm$ cylinder pots using three different soil textures (clay, fine loamy and coarse loamy) compacted at different compaction levels (1.25, 1.50, 1.75, and 2.00 MPa). Results revealed that soybean development is more sensitive on penetration resistance, irrespective of soil type. Soybean yield and root weight density significantly decreases with increasing levels of soil compaction in both clayey and fine loamy soils, but not in coarse loamy soil. The highest root weight density was recorded in coarse loamy soils, followed by fine loamy and clay soils, in descending order. The root growth by soil compaction levels started to decline from 1.16, 1.28 and 1.60 MPa for clay, fine loamy and coarse loamy soils. Soybean production in the field experiment decreased about 30% at compacted sub-soils compared to undisturbed soils.

Optimum Design on Fire Resistance of Gas Cylinder Cabinets using Thermal Analysis (열해석을 이용한 가스 실린더 캐비닛의 내화성능 최적설계)

  • Nam, Minseo;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Gas cylinder cabinets have risks such as cylinder explosion and scattering of debris when a fire occurs. These risks are likely to cause gas spills and cause secondary damage. In order to reduce damage, it is very important to secure the fire resistance performance of the gas cylinder cabinet. In foreign countries, NFPA codes in the United States and EN-14470-2 in Europe stipulate fire resistance test standards for gas cylinder cabinets to protect internal cylinders for a certain period of time in a situation where gas cylinder cabinets are exposed to flames. However, in Korea, only internal pressure performance and airtight performance standards are specified, and the target is limited to piping, and research and regulations for the fire resistance performance of gas cylinder cabinets are insufficient compared to overseas. Therefore, in this study, finite element analysis was used to establish fire resistance standards for domestic gas cylinder cabinets. In the event of a fire, optimal conditions are derived in terms of structure and material.

Conceptual Design Study on Rocket Based Combined Cycle Engine (로켓 기반 복합사이클 엔진의 개념설계)

  • Kang, Sang Hun;Lee, Yang Ji;Yang, Soo Seok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • Conceptual design of RBCC (Rocket Based Combined Cycle) engine is performed through the thermodynamic cycle analysis. The engine is designed to take off at sea level and accelerate to Mach 8 at 30 km altitude. According to the flight speed, the engine operating modes are categorized into 3 modes : Ejectorjet (~ Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). As a design result, the engine has a diameter of 1 m and a length of 6.7 m. In the prediction results, its maximum thrust is 16.5 ton. In Ramjet and Scramjet modes, design condition of the engine intake influence the engine thrust according to the flight speed.

An Real Scale Fire Reproduce Experiment on Apartment House (공동주택의 실규모 화재 재현 실험)

  • Yoo, Yong-Ho;Kweon, Oh-Sang;Kim, Heung-Youl;Choi, Young-Hwa;Yoo, Moung-Youl;SeoMoon, Soo-Cheol;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.159-162
    • /
    • 2010
  • 본 연구에서는 화재위험성이 높은 공동주택을 대상으로 실규모의 화재 재현 실험을 실시하였다. 여러 가지 발화 요인중 발생 빈도가 높은 6가지를 선정하여 재현실험을 실시하였으며, 실험결과를 토대로 화재감식 및 화재위험성을 분석하고자 하였다. 실험 결과 발화 후 약 4분이 경과후 화재가 빠른 속도로 성장하다가 5분경에 이르면서 내부로 화재가 완전히 전이 되는 것을 확인하였다. 화재시 발생되는 일산화탄소 농도는 최대 8200 ppm으로 측정되어 유독가스로 인한 질식사의 위험도 매우 높음을 보여주었다. 또한, 화재 현장의 화재감식을 실시함으로써 화재조사관의 현장 감식능력을 배양하고 화재조사경험 및 정보 공유를 위한 실질적인 기회를 제공하고자 하였다.

  • PDF

Uncertainty Quantification of Propulsion System on Early Stage of Design (추진체계 개념설계단계에서 불확실성 고려방법에 대한 연구)

  • Ahn, Joongki;Um, Ki In;Lee, Ho-il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.73-80
    • /
    • 2018
  • At the early stages of development of high-speed propulsion systems, associated uncertainties cannot be easily modeled into probabilistic distributions, owing to the lack of test data, cost, and difficulty of simulating real-flight environments on the ground. To tackle this issue, in this research, the combustion efficiencies of dual-combustion ramjet engines are assumed to have been provided by experts and quantified by evidence theory. Using quantified uncertainty, the inlet area and combustor exit are optimized while satisfying reliability margins of thrust and thermal choking. The result shows a reasonable design of the engine under uncertain circumstances.

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.