• Title/Summary/Keyword: 열주기시험(thermal cycling test)

Search Result 7, Processing Time 0.02 seconds

소형위성 기능시험 및 열주기 시험

  • Park, Jong-Oh;Choi, Jong-Yeon;Kwon, Jae-Wook;Youn, Young-Su;Cho, Seung-Won;Kim, Young-Youn;An, Jae-Chel;Choi, Seok-Won
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • KARI Electrical Test Team performed the SOH (State Of Health) test and Thermal Cycling test for small satellite of KOMPSAT-1 PFM at KARI SITC Highbay as per Storage plan every year, and verified that the system/subsystem units function installed on PFM were good without significant degradation causing from long-term storage. This paper describes the test items, test method, test procedure and selected test result data.

  • PDF

Reliability Studies on Cu/SnAg Double-Bump Flip Chip Assemblies for Fine Pitch Applications (미세피치용 Cu/SnAg 더블 범프 플립칩 어셈블리의 신뢰성에 관한 연구)

  • Son, Ho-Young;Kim, Il-Ho;Lee, Soon-Bok;Jung, Gi-Jo;Park, Byung-Jin;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.37-45
    • /
    • 2008
  • In this study, reliabilities of Cu (60 um)/SnAg (20 um) double-bump flip chip assemblies were investigated for the flip chip interconnections on organic substrates with 100 um pitch. After multiple reflows at $250^{\circ}C\;and\;280^{\circ}C$, bump contact resistances were almost same regardless of number of reflows and reflow temperature. In the high temperature storage test, there was no bump contact resistance change at $125^{\circ}C$ up to 2000 hours. However, bump contact resistances slightly increased at $150^{\circ}C$ due to Kirkendall voids formation. In the electromigration test, Cu/SnAg double-bump flip chip assemblies showed no electromigration until about 600 hours due to reduced local current density. Finally, in the thermal cycling test, thermal cycling failure mainly occurred at Si chip/Cu column interface which was found out the highest stress concentration site in the finite element analysis. As a result, Al pad was displaced out under thermal cycling. This failure mode was caused by normal compressive strain acting Cu column bumps along perpendicular direction of a Si chip.

  • PDF

Thermal Analysis on the Engineering Model of Command and Telemetry Unit for a Geostationary Communications Satellite (정지궤도 통신위성의 원격측정명령처리기 기술모델 열해석)

  • Kim, Jung-Hoon;Koo, Ja-Chun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.114-121
    • /
    • 2004
  • Thermal design changes and analysis on the engineering model of Command Telemetry Unit(CTU) for a geostationary communications satellite arc performed for the purpose of developing an engineering qualification model. A thermal model is developed by using power consumption measurement values of each functional board and thermal cycling test results. In modeling heat dissipated EEE parts, heat dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board. All the EEE parts of CTU meet the requirement of their allowable temperature range when placed on the engineering qualification level of thermal vacuum environments in accordance with the proposed thermal design changes.

TRIO-CINEMA의 환경시험 및 결과 분석

  • Geum, Gang-Hun;U, Ju;Lee, Seong-Hwan;Lee, Yong-Seok;Jeon, Je-Heon;Chae, Gyu-Seong;Jin, Ho;Seon, Jong-Ho;Lee, Dong-Hun;Thomas, Immel;Lin, Robert P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.167.2-167.2
    • /
    • 2012
  • 경희대학교와 UC Berkeley, Imperial College London에서 공동으로 진행하는 TRIO-CINEMA Mission(TRiplet Ionosphere Observatory-Cubesat for Ion, Neutral, Electron and MAgnetic fields)은 총 3기의 초소형 위성으로 구성되어 있다. 3기의 위성은 고도 650~800km 상공의 태양동주기 궤도운동을 예상하고 있으며, 지구 근접공간의 입자 검출과 자기장 측정의 과학 임무를 맡게 된다. TRIO-CINEMA 비행 모델(Flight Model)의 환경시험은 진동시험과 열진공시험으로 진행되었다. 진동시험은 X, Y, Z 세 축에 대해 Sine 과 Random 모드로 진행되었다. TRIO-CINEMA가 탑재 될 러시아의 드네프르 로켓의 요구사항은 각 축에서 20Hz 이상의 고유진동수, Sine의 경우 최대 0.8G와 4oct/min Sweep Rate, Random의 경우 5.2Grms 와 35초의 지속시간에서의 안정성을 만족하는 것이다. 시험 결과 TRIO-CINEMA가 요구사항을 모두 만족시키는 것을 확인하였다. 또한, 열 주기 시험(Thermal Cycling Test)을 진행하여 우주공간에서 위성 시스템이 정상 동작하는지에 대한 신뢰성을 검증하였다. 열주기 시험은 미국 MIL표준 값을 참고하여 $10^{-6}Torr$에서 $-20{\sim}30^{\circ}C$의 온도를 주었으며, 시험을 진행하는 동안과 시험 후에 위성이 정상작동 함을 확인하였다. 이에 본 연구의 시험 방법과 그 결과를 기술하였다.

  • PDF

Effect of Non-Conducting Filler Additions on Anisotropic Conductive Adhesives(ACAs) Properties and the Reliability of ACAs Flip Chip on Organic Substrates (이방성 전도 접착제 물성과 유기 기판 플립 칩의 신뢰성에 미치는 비전도성 충진재의 영향)

  • Im, Myeong-Jin;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2000
  • We investigated the effect of filler content on the thermo-mechanical properties of modified ACA composite materials by incorporation of non-conducting fillers and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACA s composites with different content of non-conducting fillers, differential scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechnical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Performance Analyses of the GPS Receiver for Satellite Launch Vehicles according to Temperature Variation (온도변화에 따른 위성발사체용 GPS 수신기의 성능분석)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.101-108
    • /
    • 2005
  • The GPS(Global Positioning System) receiver for satellite launch vehicles which will be mounted on a launch vehicle can be applied to the flight safety system with its accurately calculated position and velocity data during vehicle's flight. This paper analyzes the performance of the GPS receiver such as SNR(Signal to Noise Ratio), fix mode, position and velocity error, number of visible and tracking satellites, and PDOP(Position Dilution of Precision) under temperature variation which is changed from -34$^{\circ}C$ to +71$^{\circ}C$.

Application and Verification Trend of Space Qualified Materials (우주용 자재의 적용 및 검증기술 동향)

  • Lee, Choon-Woo;Lee, Chang-Ho;Cho, Young-Jun;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.60-68
    • /
    • 2008
  • The characteristic and properties of materials are rapidly degraded when subjected to the synergistic effects of the space environment such as atomic oxygen, radiation, vacuum and thermal cycling. In order to understand the mechanism of material property variation in space environment and to develop new space materials applicable to the future space program, advanced space organizations such as NASA, ESA and JAXA have been continuing many researches on material test specimens used on ISSE(International Space Station Experiment) or LDEF(Long Duration Exposure Facility). In this paper, the selection requirements and verification trend of materials in space applications

  • PDF