• Title/Summary/Keyword: 열전 특성

Search Result 2,555, Processing Time 0.035 seconds

Microwave Vacuum Drying of Germinated Colored Rice as an Enzymic Health Food (효소식품으로서 발아유색미의 마이크로파 진공건조)

  • Kim, Suk-Shin;Kim, Sang-Yong;Noh, Bong-Soo;Chang, Kyu-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.619-624
    • /
    • 1999
  • This work was to study the potential health food use of germinated colored rice after germinating and drying using microwave under vacuum. Colored rice was soaked in water at $15^{\circ}C$ for 2 days and then germinated at $25^{\circ}C$ for $3{\sim}4\;days$. The germinated colored rice was dried by different drying methods: microwave vacuum drying 1, microwave vacuum drying $2\;(drying{\rightarrow}crushing{\rightarrow}drying)$, hot air drying, vacuum drying and freeze drying. Each drier except freeze drier was set to maintain the sample temperature at $60^{\circ}C$. During microwave vacuum drying 1 or 2, the sample reached $60^{\circ}C$ much faster (within 5 min) and was dried much faster ($2{\sim}3\;hrs$ than the other drying methods. The initial drying rate of microwave vacuum drying was ten times faster than that of hot air drying. The microwave vacuum drying 2 retained the highest ${\alpha}-amylase$ activity, followed by microwave vacuum drying 1, freeze drying, vacuum drying, and hot air drying.

  • PDF

The Computer-Aided Simulation Study on the Gasification Characteristics of the Roto Coal in the Partitioned Fluidized-Bed Gasifier (상용모사기를 이용한 로토석탄의 분할유동층 가스화기 가스화 특성 모사)

  • Park, Young Cheol;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Dong-Ho;Jin, Gyoung Tae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.511-515
    • /
    • 2012
  • In this study, we used a commercial simulator to investigate the gasification characteristics of Roto coal in the partitioned fluidized-bed gasifier, which consists of 4 parts such as coal pyrolysis, char gasification, tar/oil gasification and char combustion. The heating medium was exchanged between the combustion part and the gasification part in order to supply the energy needed for pyrolysis and gasification. The correlation model from experimental data in relation to the reaction temperatures, the reaction gases and the coal feed rates was derived for the coal pyrolysis. The equilibrium model was used for the gasification and the combustion model for the char combustion. In order to compare the reaction behavior of the partitioned fluidized-bed gasifier, the single-bed gasifier was also simulated. The cold gas efficiency of both partitioned fluidized-bed gasifier and single-bed gasifier was almost the same. The $H_2$ and $CH_4$ contents of the syngas in the partitioned fluidized-bed gasifier slightly increased and the CO and $CO_2$ contents slightly decreased, compared with the singlebed gasifier. In order to verify the model, ten cases of the single-bed gasification experiment have been simulated. The contents of CO, $CO_2$, $CH_4$ in the syngas from the simulation corresponded with the experimental data while those of $H_2$ was slightly higher than experimental data, but the tendency of $H_2$ content in the syngas was similar to the experiments. In the coal conversion, the simulation results were higher than the experiments since equilibrium model was used for the gasification so that the residence time and contact time in the model is different from the experiments.

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

Frozen Food Thawing and Heat Exchanging Performance Analysis of Radio Frequency Thawing Machine (라디오파 해동기의 해동 및 가열성능 분석)

  • Kim, Jinse;Park, Seok Ho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Han, Gui Jeung;Cho, Byoung-Kwan;Park, Jong Woo
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • This study investigated the effects of 27.12 MHz radio frequency (RF) heating on heat transfer phenomena during the thawing process of frozen food. To determine the velocity of the RF thawing machine, samples were frozen at $-80^{\circ}C$ and subjected to different power treatments. The phase change times (-5 to $0^{\circ}C$) of frozen radish were 30, 26, 13, and 8 min; those of pork sirloin were 38, 25, 11, and 5 min; those of rump were 23, 17, 11, and 6 min; those of chicken breast were 42, 29, 13, and 9 min; and those of tuna were 25, 23, 10, and 5 min at 50, 100, 200, and 400 W, respectively. The heating limit temperatures of the radish, pork sirloin, rump, chicken breast, and tuna samples were 19.5, 9.2, 21.8, 8.8, and $16.8^{\circ}C$ at 50 W; 23.5, 15.5, 27.3, 12.3, and $19^{\circ}C$ at 100 W; 42, 26.9, 45.7, 22.1, and $39.4^{\circ}C$ at 200 W; and 48.5, 54.7, 63.6, 57.3, and $44.9^{\circ}C$ at 400 W. These results suggest that high-power RF improves thawing velocity and heating limit temperatures, and that an improvement on the operation of the RF thawing machine, according to food temperatures, is needed.

Inhibition of Microbial Growth in Cabbage-Kimchi by Heat Treatment and Nisin·Yucca Extract (열처리 및 나이신·유카추출물 첨가에 의한 김치의 미생물 증식 저해)

  • Kim, Ji-Sun;Kim, Yu-Jin;Park, Jung-Mi;Kim, Tae-Jip;Kim, Beom-Soo;Kim, Yeon-Mi;Kim, Hye-Rim;Han, Nam-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.11
    • /
    • pp.1678-1683
    • /
    • 2010
  • For extension of storage period of cabbage-kimchi, effects of heat treatment as well as nisin or yucca extract were examined on the growth of microbes. Firstly, when kimchi was heated at various temperatures in polyethylene plastic bottle or membrane pouch, the optimum inhibitory condition giving no sensory change was at $80^{\circ}C$ for 30 min in a plastic membrane pouch and this treatment made a reduction of $0.3\;log_{10}CFU/g$ in total microbes. The result showed that use of plastic bottle was inefficient due to low heat transfer rate. Interestingly, pasteurization of seasoning pastes at $80^{\circ}C$ for 30 min separately from cabbage resulted in better inhibitory effect reducing $0.5\;log_{10}CFU/g$ of total bacteria and $1.0\;log_{10}CFU/g$ of lactic acid bacteria, and this operation was regarded as a promising inhibitory method. Secondly, when nisin and yucca extract were separately added in kimchi, microbial growth was inhibited during storage period and their inhibition effects were enhanced at lower temperature.

Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds (다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회)

  • Hong, Yoon-Seok;Kang, Gyung-Soo;Park, Joo-Sik;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Hydrodynamic characteristics in multistage annular type fluidized bed (riser: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)were investigated. Glass beads ($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Geldart classification B) was used as a bed material. Accumulated weight by the electronic balance was measured to determine the solid flow rate in batch-type. In circulation condition, we measured the accumulated weight of particle transported from riser. At the steady state condition, solid circulation rate was calculated from time interval of the heated bed material passing between two thermocouples. Solid flow rate increased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 2.2 to 23.4 kg/s. However, mean residence time decreased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 1,438 to 440 s. The solid holdup in the riser was determined by measuring pressure differences according to the riser height. These results showed a similar trend to that of simple exponential decay type except for the top section of the riser. To verify the gas bypassing from top bubbling beds to middle bubbling beds, $CO_2$ gas was injected by tracer gas in constant ratio, and then was measured $CO_2$ concentration in outlet gas by gas chromatography. Gas bypassing occurred below 2.6% which is negligible value.

Effect of Substrate to Inoculum Ratio on Biochemical Methane Potential in the Thermal Pretreatment of Piggery Sludge (양돈분뇨의 열전처리에서 기질과 접종액의 비율이 메탄생산 퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Oh, Seong-Yong;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.532-539
    • /
    • 2012
  • This study was carried out to investigate the effect of substrate to inoculum ratio on ultimate methane potential ($B_u$) from piggery wastes. BMP(Biochemical methane potential) assays were executed for the three samples that have different organic characteristics (Filtrate of pig slurry, LF; Thermal hydrolysate of piggery sludge cake, TH; Mixture of LF and TH at the ratio of 4 to 1, Mix), and $B_u$ values obtained from BMP assays were compared with the theoretical methane potential ($B_{th}$) of each samples. While $B_u$ values (0.27, 0.44, and $0.46Nm^3\;Kg^{-1}-VS_{added}$) of TH sample that was pretreated with thermal hydrolysis were below the $B_{th}$ at all S/I ratios (0.1, 0.3, and 0.5), and $B_u$ values of LF (0.64 and $0.53Nm^3\;Kg^{-1}-VS_{added}$ for the S/I ratios of 0.1 and 0.3, respectively) at the lower S/I ratios of 0.1 and 0.3 exceeded the $B_{th}$ values ($0.418Nm^3\;Kg^{-1}-VS_{added}$). And also biodegradability ($B_u/B_{th}$) of LF sample were obtained as 152.07%, 122.67%, and 95.71% at the S/I ratios of 0.1, 0.3, and 0.5, respectively, and unreasonable $B_u/B_{th}$ values were presented at lower S/I ratios of 0.1 and 0.3. $B_u$ and $B_u/B_{th}$ of Mix sample showed a similar tendency with those of LF sample. Therefore, TH sample by thermal hydrolysis pretreatment showed lower anaerobic biodegradability than those of other samples (LF and Mix) and ultimate methane potentials of LF and Mix samples were overestimated in the lower S/I ratio of 0.1 and 0.3.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Multi-element Ultrasound Applicator for the Treatment of Cancer in Uterus and Cervix (자궁암 치료용 다채널 초음파 온열치료기)

  • Lee Rena
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • The objective of this study was to construct multi-element ultrasound applicators for the treatment of gynecologic cancer with high dose rate brachytherapy. For the treatment of uterus, piezo-ceramic crystal transducer (PZT -5A) with outer diameter of 4 mm, wall thickness of 1.3 mm, and length of 24.5 mm was selected. For the treatment of cervix or vagina, it should be possible to insert the applicator into the vagina. Thus, a cylindrical PZT -8 material with outer diameter of 24.5 mm, wall thickness of 1.3 mm, and length of 15.2 mm was selected. The operating frequencies determined by vector impedance measurement were 3.2 MHz for the PZT 5A cylinder (OD=4 mm) and 1.7 MHz for the PZT -8 cylinder (OD: 24.5 mm). The ratios of generated acoustic output power to applied electric power were 33% and 61% for the tandem type crystal and the cylinder type crystal, respectively. The radiated acoustic pressure fields from both transducers were calculated using a Matlab code and measured in water using hydrophone. There was good agreement between measured and calculated acoustic pressure field distribution. For a tandem type transducer, the calculated acoustic pressure field decreased from 0.023 MPa at 10 mm to 0.010 Mpa at 30 mm, the reduction of 57%. For the cylinder type transducer which will be used for the treatment of vagina showed 78% reduction at 15 mm and 66% at 25 mm as compared to values at 5 mm from the surface. Based on the characteristics of the transducers, this study demonstrated the possibility of using the crystals as a heating source. Finally, a 3-element and 4-element prototype applicators were constructed. The 3-element applicator is 75 mm long and 4 mm thick and will be used for the treatment of uterus. The 4-element applicator is 61 mm long and 24.5 mm thick and will be used for the treatment of vagina. Using these applicators, it is possible to generate enough power to increase temperature to therapeutic level.

  • PDF