• Title/Summary/Keyword: 열전재료

Search Result 813, Processing Time 0.055 seconds

Chalcogenide계 열전재료

  • Kim, Il-Ho
    • Electrical & Electronic Materials
    • /
    • v.24 no.7
    • /
    • pp.10-17
    • /
    • 2011
  • 현재 개발 중인 Chalcogenide계 열전재료 중에서, 이방성 재료인 Thallium chalcogenide, Alkalimetal bismuth chalcogenide, Bismuth telluride와 등방성 재료인 Lead telluride, Silver antimony telluride, TAGS, LAST 및 SALT를 소개하였고, 이 재료들에 대한 연구 동향을 살펴보았다. Chalcogenide는 S, Se, Te 및 다른 원소와의 다양한 조합에 의해, 넓은 온도범위에서 열전재료로 응용하기 위한 밴드갭 에너지의 조절이 가능하다. 또한 합성공정에 따른 상변태, 석출 등 구조변화에 따른 열전특성의 변화를 기대할 수 있어 열전재료 개발 초기부터 활발한 연구가 진행되어 왔다. 과거의 전통적인 Chalcogenide계 열전재료뿐만 아니라, Chalcogenide계 열전 신소재에 대해서도 살펴보았다. Chalcogenide는 전자적, 광학적, 열적 성질 등 특성이 독특하고 변화가 무궁무진하여 아주 매력적이기 때문에, 앞으로도 계속 열전재료로서 각광받는 물질군으로 판단된다. 그림 11에 현재까지 ZT의 최댓값이 1이 넘는다고 보고된 열전재료의 성능지수를 요약하였다.

  • PDF

High efficiency functionally graded thermoelectric materials (고효울 경사기능성 열전변환재료)

  • Park, Hyun-Jong;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2267-2268
    • /
    • 2008
  • 에너지 문제가 국제적인 이슈로 떠오르고 있는 가운데 열에너지와 전기에너지 사이의 에너지 변환 현상, 즉 열전효과를 이용한 열전발전은 최근 여러 국가에서 연구가 활발히 진행 중이다. 경사기능성 재료(FGM)란 기존의 물질들에 경사적인 특성 변화를 주어 새로운 물질로 탄생시킨 개념으로, 이 논문에서는 그동안 발표된 열전변환재료들의 열전변환특성을 이용하여 경사기능성재료를 구성하여 보았다. 또한 구성한 경사기능성재료와 단일재료를 이용하여 기본적인 열전발전회로에 적용시켜, 변환효율을 계산하여 보았다. 시뮬레이션 결과를 이용하여 경사기능성 열전변환재료와 단일 물질의 변환 효율을 비교하였으며, 경사기능성 열전변환재료가 단일 열전변환재료보다 뛰어난 성능을 갖고 있음을 유도하였다.

  • PDF

Preparation of $Bi_2Te_3$ Thermoelectric Materials by Co-precipitation Method (공침법을 이용한 $Bi_2Te_3$ 열전재료의 제조)

  • Kim, Dong-Hwan;Im, Hee-Joong;Je, Koo-Chul;Kang, Young-Jin;Ahn, Jeung-Sun;Tadaoki Mitani;Nam, Tae-Hyun;Shim, Young-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.167-167
    • /
    • 2003
  • 현대 산업이 발전함에 따라 전자부품의 초소형화, 고성능화가 요구되어지고 있으며, 이러한 점에 부응하기 위하여 Pottier 효과를 이용하여 국부냉각이 가능한 열전재료에 대한 많은 연구가 이루어지고 있다. 열전재료에는 사용온도 영역에 따라 여러 종류가 있지만, Bi-Te계 열전재료는 상온영역에서 가장 성능지수(Z=$\alpha$$^2$$\sigma$/$textsc{k}$, $\alpha$는 Seebeck 계수, $\sigma$는 전기전도도, $textsc{k}$는 열전도도)가 높아 각종 냉각소자로서 사용되어 지고 있다. 하지만, 초소형 전자부품의 국부냉각을 위해서는 성능지수의 향상, 특히, 저온 영역에서의 성능지수의 향상이 요구되고 있다. 본 연구에서는 Bi-Te계 열전재료의 성능지수를 향상시키기 위하여, 열전도도의 저하에 의한 성능지수의 향상을 연구목적으로 하였다 열전도도는 전자에 의한 열전도도(K$_{e}$)와 phonon에 의한 열전도도(K$_{p}$)로 이루어지며, 전기전도도에 큰 영향을 미치지 않는 결정립 사이즈영역에서 결정립의 크기를 미세화 하면, 결정입계에서의 phonon의 산란이 증가하여 phonon에 의한 열전도도를 저하시킴으로서 성능지수의 향상이 기대된다. 따라서 본 연구에서는 나노사이즈 분말의 제조에 많이 이용되며 입자크기의 조절이 용이한 공침법을 이용하여 Bi-Te계 열전재료 분말을 제조하고 열전재료에의 적용가능성을 검토하였다.

  • PDF

이원 동시 마그네트론 스퍼터링법을 이용하여 증착한 In-Sn-Zn-O 박막의 열전 특성

  • Byeon, Ja-Yeong;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.253-253
    • /
    • 2015
  • 최근 세계적으로 대체 에너지는 중요한 이슈가 되고 있으며 특히 열전 재료는 유망한 에너지 기술로서 주목 받고 있다. 특히 고 직접화 전자 소자의 발열 문제를 해결하기 위해, 소형화와 정밀 온도 제어가 가능한 박막형 열전 소자에 대한 관심이 크다. 박막형 열전소자 중 산화물 반도체계에 대한 연구가 활발히 진행되고 있으며, 이러한 산화물 반도체계 중 In2O3는 BiTe, PbTe 등의 기존의 재료에 비해 독성이 낮을 뿐만 아니라 고온에서 열적 안정성이 우수하여 고온에서 적용 불가능한 금속계 열전 재료의 한계를 극복할 수 있다는 장점을 가진다. 좋은 성능의 열전 재료는 높은 전기 전도도 및 제백 계수 그리고 낮은 열전도도 특성을 가져야 한다. 비정질 구조를 가지는 박막 열전 재료는 격자에 의한 열 전도도가 낮기 때문에 결정질 구조와 비교하여 전체 열 전도도 값이 낮을 것으로 기대된다. 이러한 특성을 바탕으로 본 연구에서는 비정질 구조를 갖는 ZnO와 SnO2를 동시에 첨가한 In2O3 박막의 전기적 특성과 열전 특성에 관한 연구를 하였다.

  • PDF

Thermoelectric and electrical properties of amrophous IZO and crystalline ITO thin films (DC 마그네트론 스퍼터링법으로 증착한 비정질 IZO와 결정질 ITO박막의 열전 특성)

  • Byeon, Ja-Yeong;Kim, Seo-Han;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.159-159
    • /
    • 2016
  • 세계적으로 대체 에너지는 중요한 이슈가 되고 있으며, 이들 중 열전 재료는 열 에너지를 전기 에너지로 바꿀 수 있는 열전 재료가 각광 받고 있다. 그 중, 박막 형태의 열전 재료는 벌크 형태에 비해 나노 구조화가 용이하여 열전 특성을 향상 시킬 수 있는 잠재력을 지니고 있다. 특히, 박막형 열전 소자는 정밀 온도 제어가 가능하며, 소형화 기기의 응용이 가능하여, 고 직접화 전자 소자의 발열 문제를 해결 할 수 있어 더욱 주목 받고 있다. 박막형 열전소자 중 산화물 반도체계에 대한 연구가 활발히 진행되고 있으며, 이러한 산화물 반도체는 기존의 화합물 반도체인 Pb-Te, Bi-Te 등의 기존의 재료에 비해 낮은 독성을 가진다. 또한, 고온에서 열적 안정성이 우수하여 고온에서 적용 가능하다는 장점을 가진다. 열전재료의 효율은 열전 성능 지수(ZT)와 Power factor(PF)로 평가된다.

  • PDF

Development of thermoelectric semiconductor material by rapid solidification process (급속응고법에 의한 열전반도체 재료 개발)

  • 홍순직;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.80-80
    • /
    • 2002
  • Bi-Te게 열전재료는 200~400K 정도의 저온에서 에너지 변환 효율이 가장 높은 재료로써 열전냉각, 발전재료 등에 응용하기 위하여 제조방법 및 특성에 관한 많은 역구가 진행되어 왔다. 현재 산업화에 응용되고 있는 일방향응고법은 기계적 강도가 약하여 회수 율이 낮으며, 결정을 성장시키는데 비교적 장시간을 필요로 하기 때문에 제조 단가가 비싸다. 따라서 이와 같은 문제점을 보완하기 위하여 합금설계 및 가공공정에 대한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 가스분사법을 이용하여 용질원자 편석감소, 고용도의 증가, 균일고용체 형성, 결정립 미세화 등 급속응고 장점을 이용하여 화학적으로 균일한 BI-TerP열전재료 분말을 제조하고, 열간압출 가공을 통하여 이방성의 향상과 함께 미세한 결정립으로 우수한 기계적 강도를 얻을 수 있도록 제조된 분말을 압출 가공하여 열전소자의 기계적 성질과 열전특성을 연구하였다. 그 결과 급속응고 및 압출 공정을 이용한 본 연구에서는 $10\mu\textrm{m}$이하의 미세한 조직과 함께 압출공정을 통하여 이방성을 향상시켰으며, 열전소자는 $2.5{\times}10^{-3}/K$이상의 Figure of merit값을 나타내는 우수한 열전특성을 나타냈다.

  • PDF

Electrodeposition of Thermoelectric Nanowires (전기도금법에 의한 열전 나노와이어 제조)

  • Lee, Gyu-Hwan;Lee, Gyeong-Hwan;Kim, Dong-Ho;Lee, Geon-Hwan;Kim, Uk-Jung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.59-60
    • /
    • 2007
  • 열전재료는 냉각과 발전 분야에서 매우 매력적인 친환경 에너지 소재이다. 열전 재료의 효율을 나타내는 성능 지수는 ZT로 나타내는데, 기존의 bulk 재 열전소재의 경우 그 값이 1 내외이다. 그러나 기존의 타 기술과의 경쟁에서 우위를 점하기 위해서는 ZT 값이 3이 되어야 한다. 이론적인 계산에 의하면 나노 박막이나 나노와이어 형태로 열전재료를 제어를 함으로써 ZT 값의 현저한 향상이 예상되어 ZT값이 3이상의 값도 얻을 수 있을 것으로 기대된다. 전기도금법은 나노와이어 형태의 열전재료를 경제적으로 대량 생산할 수 있는 가장 유력한 방법이다. 본 발표에서는 전기도금법을 이용하여 n-형 BiTe 계와 p-형 BiSbTe계 열전반도체 나노와이어를 제조하고 그 특성을 측정한 연구결과를 소개한다.

  • PDF

단일 나노선의 열전물성 측정용 열전 MEMS 플랫폼 개발

  • Sin, Ho-Seon;Jeon, Seong-Gi;Lee, U;Yu, Jin;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.589-589
    • /
    • 2013
  • 열전재료는 제백효과(Seebeck effect)에 의해 폐열을 전기에너지로 변환시킬 수 있는 소재로서, 기존의 열전재료가 나노수준으로 크기가 줄어들 경우 양자제한효과에 의한 제백계수의 증가와 표면산란에 의한 열전도도 감소로 인해 벌크재료에 비해 높은 에너지변환효율을 가질 수 있을 것으로 기대되고 있다. 에너지 변환효율은 열전성능계수인 $ZT=S2{\sigma}T/k$로 정의되며 따라서 우수한 열전재료는 높은 제백계수 S와, 높은 전기전도도 ${\sigma}$ 및 낮은 열전도도 k를 갖는 재료여야 한다. 그러나 나노소재는 낮은 측정 신호와 측정소자준비가 어려워 기존 측정시스템으로는 원활한 측정이 어렵다. 특히 열전도도의 경우 나노소재 자체의 열전도 보다 나노소재 주변 구조에 의한 열전도가 큰 경우 정확한 열전도도 평가가 어렵다. 본 연구에서는 나노선의 열전물성을 평가하기 위해 MEMS기반 기술을 이용하여 열전물성 측정플랫폼(MEMS-based thermoelectric measurement platform, MTMP)을 개발하였다. 개발 된 MTMP는 얇은 Si nitride 브릿지들이 허공에 떠 있는 두 개의 아일랜드 형태의 멤브레인 구조를 지지하는 형태로 제작되었으며, 한 쪽 아일랜드구조 위에는 나노히터가 있어 두 아일랜드 구조 사이에 온도구배를 만들 수 있도록 제작되었다. 제작된 멤브레인을 이용하여 전기화학적인 방법으로 합성한 Bi-Te계 나노선의 S, ${\sigma}$ 그리고 k를 측정하였다. 측정결과 화학양론적 미세구조를 갖는 단결정 Bi2Te3 나노선은 300 K의 측정온도에서 $S=-57{\mu}V/K$, ${\sigma}=3.9{\times}10^5S/m$, k=2.0 W/m-K의 측정 값으로 ZT=0.19였다. 본 연구에서 개발한 MTMP는 나노선 뿐만 아니라 나노플레이트의 열전 측정에도 활용할 수 있는 구조로서 나노열전소재 측정에 널리 활용될 수 있다.

  • PDF

Thermoelectric Properties of Rapidly Solidified and extruded N-type $Bi_2Te_{2.85}Se_{0.15}$ alloy with extrusion die angle (급속응고법에 의한 $Bi_2Te_3$계 N형반도체 열전재료의 압출 다이각 변화에 따른 열전특성)

  • 권동진;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-29
    • /
    • 2001
  • 열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20$0^{\circ}C$)이하에서는 $Bi_2Te_3$계 재료, 중온영역(20$0^{\circ}C$~50$0^{\circ}C$)에서sms (Pb,Ge) Te계 재료, 고온영역(50$0^{\circ}C$~lOoo$^{\circ}C$)에서는 Si-Ge계 Fe Si계 재료가 이용되고 있다. 본 연구에서는 실온에서 성능지수가 높은 Bi_2(Te,Se)_3$에 대한 연구를 진행하였다. Bi_2(Te,Se)_3$계 열전재료는 기존의 공법인 Zone melting법을 이용하는 경우 성능지수가 높으나, 단위정이 Rhombohedral 구조파 기저면(basal plane)에 벽개성이 있는 관계로 재료의 적지 않은 손실과 가공상의 어려움이 있다. 또한 사료전체에 걸쳐 화학적으로 균질한 고용체를 얻는 것도 어려운 문제점으보 부각되고 있디 따라서 이와같은 문제점을 보완하기 위하여 용질원자의 편석감소, 고용도의 증가, 균일 고용체 형성, 결정립의 미세화등의 장점이 있는 급속응고법을 본 연구에 응용하였다. 본 연구에서는 위에서와 같은 급속응고의 장점과 대량 가공이 능늪한 연간압출공정을 이용하여 제조된 분말을 성형화 하였다. 특히 열간압출 가공에 있어서 압축다이 각 변화는 재료의 소성유동에 매우 중요한 역하을 하게되며, 이와 갇은 소성유동은 본 재료의 열전특성에 중요한 영향을 미치는 C 면 배양에 중요한 역할을 한 것으 로 기대된다. 이에 본 연구에서는 압출다이 각도 변화에 따른 미세조직변화와 이들 조직이 강도와 열전특성에 미치는 영향을 석하고자 한다. 압출재의 미세조직은 XRD(X Ray Diffraction), SEM(Scanning Electron Microscopy)으로 분석하였으며, 열전특성인 Seebeck계수($\alpha$)와 전기비저항( $\rho$ )은 열전측정장치로, 기계적 강도는 MTS장비를 이용하여 이루어졌다. 또한 압축다이각도 변화에 따른 결정방위 해석은 모노크로미터가 장착된 X RD장비감 이용하여 분석되었다.

  • PDF