• Title/Summary/Keyword: 열전달촉진계수

Search Result 59, Processing Time 0.023 seconds

An Experimental Study on Tube-Side Heat Transfer Coefficients and Friction Factors of the Enhanced Tubes Used in Regenerators of Absorption Chillers (흡수식 냉동기의 재생기에 사용되는 전열촉진관의 관 내측 열전달계수 및 마찰계수에 대한 실험적 연구)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.716-723
    • /
    • 2016
  • Enhanced tubes are used widely in the heat exchangers of absorption chillers. In regenerators, corrugated, ribbed or floral tubes are commonly used. In this study, the tube-side heat transfer coefficients and friction factors of enhanced tubes were obtained experimentally using the Wilson Plot method. The results showed that the heat transfer coefficients and the friction factors were the largest for the corrugated tube, followed by the ribbed tube. The heat transfer coefficients and friction factors of the floral tube matched those of the smooth tube within 4%, which suggests that the heat transfer and friction characteristics of the floral tube may be accounted for properly by the hydraulic diameter. The B(e+) and g(e+) were obtained from the experimental data of the corrugated and ribbed tube. The B(e+) and g(e+) of the corrugated tube matched those of the existing correlation within 20%. The present results may be used for an assessment of the heat transfer and friction characteristics of the enhanced tubes for regenerators.

Pool Boiling Heat Transfer Coefficients of Hydrocarbon Refrigerants on Various Enhanced Tubes (열전달 촉진관에서 탄화수소계 냉매의 풀비등 열전달계수)

  • Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1017-1024
    • /
    • 2006
  • In this work, pool boiling heat transfer coefficients (HTCs) of five hydrocarbon refrigerants of propylene, propane, isobutane, butane and dimethylether (DME) were measured at the liquid temperature of $7^{\circ}C$ on a 26 fpi low fin tube, Turbo-B, and Thermoexcel-E tubes. All data were taken from 80 to $10kW/m^2$ in the decreasing order of heat flux. The data of hydrocarbon refrigerants showed a typical trend that nucleate boiling HTCs obtained on enhanced tubes also increase with the vapor pressure. Fluids with lower reduced pressure such as DME, isobutane, and butane took more advantage of the heat transfer enhancement mechanism of enhanced tubes than those enhancement ratios of $2.3\sim9.4$ among the tubes tested due to its sub-channels and re-entrant cavities.

Pool Boiling Heat Transfer Coefficients of R1234yf on Various Enhanced Surfaces (열전달 촉진 표면에서 R1234yf의 풀 비등 열전달계수)

  • Lee, Yohan;Kang, Dong Gyu;Seo, Hoon;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.143-149
    • /
    • 2013
  • In this work, nucleate pool boiling heat transfer coefficients (HTCs) of R134a and R1234yf are measured, on flat plain, 26 fpi low fin, Turbo-B, Turbo-C and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a small square copper plate ($9.53mm{\times}9.53mm$), at heat fluxes from $10kW/m^2$ to $200kW/m^2$, with an interval of $10kW/m^2$. Test results show that nucleate boiling HTCs of all enhanced surfaces are greatly improved, as compared to that of a plain surface. Nucleate pool boiling HTCs of R1234yf are very similar to those of R134a, for the five surfaces tested.

Heat Transfer Enhancement by Fins in a Latent Heat Storage System Using Phase Change Material (상변화물질을 이용한 축열시스템에서 핀에 의한 열전달 촉진 연구)

  • 한승구;한귀영
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.115-122
    • /
    • 1996
  • Heat transfer characteristics of low temperature latent heat storage systems have been examined for the circular finned and unfinned tubes using Na$_2$B$_4$O$\_$7/10H$_2$O as a phase change material. In order to reduce the supercooling of PCM, 3 wt% of Na$_2$B$_4$O$\_$7/10H$_2$O was added as the nucleating agent and 2.2 wt% of acrylic acid sodium sulfate was used as the thickener. The heat storage vessel has dimension of 530 mm height, 74 mm 1.D. and inner heat transfer tube is 480 mm height and 13.5 mm O.D. Water was employed as the heat transfer fluid. During the heat recovery experiment, the heat recovery rate was affected by the flow rates and inlet temperature of heat transfer fluid. The enhancement of heat transfer by fins over the unfinned tube system was found to be negligible in the thin finned tube systems, whereas the heat transfer coefficient in the thick finned tube system is approximately 60% higher than that in the unfinned lobe system. The experimentally determined heat transfer coefficient for the unfinned tube and thick finned tube systems are 150-260 W/㎡$^{\circ}C$ and 230-530 W/㎡$^{\circ}C$, respectively. The fin efficiency based on the heat transfer coefficient and area increased by fins was found to be 0.05 and 0.26 for the thin and the thick finned tube systems.

  • PDF

Pool Boiling Enhancement of R-123 Using Perforated Plates (다공판을 사용한 R-123 풀비등 열전달 촉진)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.275-281
    • /
    • 2016
  • In this study, we investigate the pool boiling enhancement caused by perforated plates on top of a smooth surface. We conduct tests using R-123 at atmospheric pressure. It was shown that perforated plates significantly enhanced the pool boiling of the smooth surface. The reason may be attributed to the increased bubble contact area between the plates. The results showed that the enhancement ratio was dependent on the heat flux. At high heat flux, the enhancement ratio increased as the porosity increased. However, at low heat flux, the enhancement ratio decreased as the porosity increased. For the present investigation, the optimum configuration had a pore diameter of 2.0 mm, pore pitch of $2.5mm{\times}5.0mm$ or $5.0mm{\times}5.0mm$, and a gap width of 0.5 mm, which yielded heat-transfer coefficients that are close to those of GEWA-T. The optimum porosity for R-123 was significantly larger than that of water or ethanol. The reason for this may be the large liquid-to-vapor density ratio along with the small latent heat of vaporization of R-123. The perforated plates yielded smaller boiling hysteresis compared with that of the smooth surface.

Evaluation of Heat Transfer Enhancement Performance for Wire Coil Inserts in Horizontal Smooth Tubes (수평 평활관 내부에 삽입한 와이어코일 인서트에 대한 전열성능평가)

  • 남상철;이주동;이상천
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.202-211
    • /
    • 2000
  • 본 연구는 다양한 각도를 가지는 와이어코일을 사용하여 관내 단상 열전달 촉진 및 압력강하 특성 실험을 수행하였다. 작동유체는 순수 물과 에틸렌글리콜을 체적비율로 50% 혼합하여 사용하였으며, 시험부 관지름은 11mm와 13.88mm이고, 시험부 길이는 760mm를 사용하였다. 평활관과 와이어코일을 삽입한 열전달촉진관에 대한 관내 열전달계수와 마찰계수는 실험에서 측정한 온도, 유량, 압력강하 값을 기초로 구하였다. 와이어코일에 대한 거친표면해석을 수행하였으며, 그 결과를 거칠기 래이놀즈수에 대한 운동량전송 거칠기함수와 열전달 거칠기함수로 표현하였으며 이에 대한 상관식을 제시하였다. 이 상관식들은 거칠기 레이놀즈수, 코일 각도, 프란틀수의 함수로 표현하였다.

  • PDF

Study of Pool Boiling Heat Transfer on Various Surfaces with Variation of Flow Velocity (다양한 표면에서 유동 속도에 따른 풀 비등 열전달에 관한 연구)

  • Kang, Dong-Gyu;Lee, Yohan;Seo, Hoon;Jung, Dongsoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • In this study, a smooth flat surface, low fin, Turbo-B, and Thermoexcel-E surfaces are used to examine the effect of the flow velocity on the pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs). HTCs and CHFs are measured on a smooth square heater of $9.53{\times}9.53mm^2$ at $60^{\circ}C$ in a pool of pure water at various fluid velocities of 0, 0.1, 0.15, and 0.2 m/s. Test results show that for all surfaces, CHFs obtained with flow are higher than those obtained without flow. CHFs of the low fin surface are higher than those of the Turbo-B and Thermoexcel-E surfaces due largely to the increase in surface area and sufficient fin spaces for the easy removal of bubbles. CHFs of the low fin surface show even 5 times higher CHFs as compared to the plain surface. On the other hand, both Turbo-B and Thermoexcel-E surfaces do not show satisfactory results because their pore sizes are too small and water bubbles easily cover them. At low heat fluxes of less than $50kW/m^2$, HTCs increase as the flow velocity increases for all surfaces. In conclusion, a low fin geometry is good for application to steam generators in nuclear power plants.

A Study on the Enhanced Tubes for Electric Utility Steam Condensers (발전소 응축기용 전열 촉진관에 대한 연구)

  • 김내현
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.207-212
    • /
    • 1995
  • 본 연구에서는 발전소 응축기를 시뮬레이션 할 수 있는 프로그램을 개발하였다. 관 내외 측 열전달계수의 계산에는 기존 상관식들과 응축 모델을 사용하였고 $\varepsilon$-NTU 방법을 사용하여 응축기를 해석하였다. 실제 응축기를 모사하기 위하여 관다발 보정계수 및 화울링 계수도 도입하였다. 이 프로그램을 사용하여 기존 평관을 대체할 전열촉진관의 형상을 도출하였다. 시뮬레이션 결과 전열촉진관을 사용하면 증기 응축 온도를 6 - 8 $^{\circ}C$ 정도 낮출 수 있음을 알 수 있었다.

  • PDF

Experimental Study of Air Side Pressure Drop and Heat Transfer Characteristics of Enhanced Fin-Tube Heat Exchangers (열전달 촉진 핀-관 열교환기의 공기측 압력강화 및 열전달 특성에 관한 실험)

  • Youn, Baek;Kil, Yong Hyun;Park, Hyun Yeon;Kim, Young Saeng
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1555-1563
    • /
    • 1998
  • Heat transfer and pressure drop for ${\phi}10.07$ dry surface fin-tube heat exchanger with wave and wave-slit fins were measured for different fin spacings and number of tube rows. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of wave fin is 1.5mm. The experiments were performed for 4 different fin spacings, 1.3, 1.5, 1.7 and 2.0mm, and the number of tube rows were 1,2 and 3 rows. The present results were compared with the previous results for the wave depth of 2mm. Also hydrophilic coated and bare fins were tested. Correlations for Colburn j-factor and friction factor were developed.

Condensation heat transfer coefficients of alternative refrigerants for CFC11, CFC12 and HCFC22 (CFC11, CFC12, HCFC22 대체냉매의 응축 열전달계수)

  • 정동수
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.5
    • /
    • pp.389-395
    • /
    • 1999
  • 냉동공조설비, 발전설비, 화학플랜트설비 등에 사용되는 응축기는 주로 증기가 관의 외부에서 응축을 하고 냉각수가 관 내부로 흐르는 쉘-튜브(shell and tube)형 태를 취하고 있다. 초기투자비용 및 운전비용을 줄이기 위해서는 응축기의 열교환 성능을 향상시키는 일이 필수적이며 이를 위해 코팅 표면(coated surfaces), 거친 표면(rough surfaces), 코일 튜브(coiled tubes), 선회 흐름장치(swirl flow), 전열면적을 넓힌 낮은 핀관과 3차원 형상을 갖는 열전달 촉진관의 사용이 제시되고 있다.

  • PDF