• Title/Summary/Keyword: 열적 활성화 에너지

Search Result 76, Processing Time 0.025 seconds

Thermal Stability and the Effect of Substrate Temperature on the Structural and Magnetic Properties of Pd/Co Multilayer Films (Pd/Co 다층박막의 구조 및 자기적 특성에 미치는 기판온도 및 열적안정성에 관한 연구)

  • 허용철;김상록;이성래;김창수
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.298-304
    • /
    • 1993
  • The effects of the substrate temperature and the Pd underlayer on the structure and the magnetic properties of Pd/Co multilayer films prepared by the thermal evaporation were studied. As the substrate temperature increases up to $150^{\circ}C$, the crystallinity of sublayers, (111) texture and the interface sharpness of Pd/Co multilayers were improved due to the enhanced mobility of adatoms. As results of that, the perpendicular and surface anisotropy energies were increased but the coercivity was decreased because the pinning sites of domain wall decreased due to the grain growth. The grain size of the multilayers increased with Pd underlyer thickness. Thermal degradation was enhanced at above $200^{\circ}C$ due to interdiffusion at the Pd/Co interface. The intensity of the main diffraction peak rapidly decayed in the initial stage of aging and then decreased slowly. The rapid change of the intensity in the initial stage was speculated to be due to the structural relaxation phenomena and the later stage change was due to the interdiffusion. The activation energy for the interdiffusion in Pd4/Co1 multilayers was 14.9 KCal/mole.K.

  • PDF

Thermal Degradation of High Molecular Components Obtained from Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해로부터 생성된 고분자성분의 열적분해)

  • Oh, Sea Cheon;Ryu, Jae Hun;Kwak, Hyun;Bae, Seong-Youl;Lee, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-198
    • /
    • 2008
  • The thermal degradation characteristics of high molecular components obtained from pyrolysis of mixed waste plastics have been studied by thermogravimetric analysis (TGA) and gas chromatography spectrometry (GC-MS). The kinetics of thermal degradation has been studied by a conventional nonisothermal thermogravimetric technique at several heating rates between 10 and $50^{\circ}C/min$. The dynamic thermogravimetric analysis curve and its derivative have been analyzed using a variety of analytical methods reported in the literature to obtain information on the kinetic parameters such as activation energies and reaction orders. The yields of liquid products have been monitored by batch pyrolysis reactor under various reaction temperatures and reaction times. And the characteristic of liquid products with the increase in reaction temperature has been performed by GC-MS.

Cure Behaviors and Fracture Toughness of PEl/Difunctional Epoxy Blends (PEI/DGEBA 블랜드계의 열적특성 및 파괴인성)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shinyoung
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.33-40
    • /
    • 2003
  • In this work, diglycidyl ether of bisphenol A (DGEBA)/polyetherimide (PEI) blends were cured using 4,4-diaminodiphenyl methane (DDM). And the effects of addition of different PEI contents to neat DGEBA were investigated in the thermal properties and fracture toughness of the blends. The contents of contents of containing PEI were varied in 0, 2.5, 5, 7.5, and 10 phr. The cure activation energies ($E_a$) of the cured specimens were determined by Kissinger equation and the mechanical interfacial properties of the specimens were performed by critical stress intensity factor ($K_{IC}$). Also their surfaces were examined by using a scanning electron microscope (SEM) and the surface energetics of blends was determined by contact angles. As a result, $E_a$ and $K_{IC}$ showed maximum values in the 7.5 phr PEI. This result was interpreted in the increment of the network structure of DGEBA/PEI blends. Also, the surface energetics of the DGEBA/PEI blends showed a similar behavior with the results of $K_{IC}$. This was probably due to the improving of specific or polor component of the surface free energy of DGEBA/PEI blends, resulting in increasing the hydrogen bonding of the hydroxyl and imide groups of the blends.

  • PDF

Thermal Aging and Creep Rupture Behavior of STS 316 (STS 316의 시효 열화 처리와 크리프 거동 특성)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.123-129
    • /
    • 1999
  • Although type 316 stainless steel is widely used such as in reactors of petrochemical plants and pipes of steam power plants and s attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants and is attracting attention as potential basic material for the fast breeder reactor structure alloys in nuclear power plants the effect of precipitates which form during the long term exposure at service temperature on creep properties is not known sufficiently. In this study to investigate the creep properties and the influence of prior aging on the microstructure to form precipitates specimens were first solutionized at 113$0^{\circ}C$ for 20 minutes and then aged for different times of 0 hr, 100 hrs, 1000 hrs and 2200 hrs at 75$0^{\circ}C$ After heat treatments tensile tests both at room temperature and $650^{\circ}C$ and constant load creep ruptuere tests were carried out.

  • PDF

Thermal Decomposition of Phase Stabilized Ammonium Nitrate (PSAN) (상안정화 질산암모늄(PSAN)의 열분해)

  • 김준형;임유진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.23-30
    • /
    • 1999
  • The thermal decomposition of phase stabilized ammonium nitrate(PSAN) was studied by means of thermogravimetric analysis(TGA). In this study, potassium nitrate and zinc oxide were used as the phase stabilizers in the range of contents from 0 wt.% to 8 wt.%. The kinetics and mechanism for the decomposition were evaluated using integral methods. It was found that the thermal kinetic parameters such as activation energy(I) and frequency factor(A) increase with the increase of the stabilizer contents, and the mechanism of decomposition also changes.

  • PDF

Aging Phenomena of PZT Piezoelectric Ceramics (PZT 압전 세라믹의 시효현상)

  • 김종성;위성권;김군칠;윤형규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.29-38
    • /
    • 1986
  • 본 논문은 분극처리된 PZT 압전 세라믹 소자의 물리, 음향학적 제 특성이 시간의 함수로 나타 나는 시효현상을 다루고 있다. SrCO\sub 3\, NiO 및 Fe\sub 2\O\sub 3\를 소량 첨가하여 직접 제조한 PZT 세라믹은 분극처리 후, f\sub r\ 은 증가하는 시효현상을 보여주었다. 시효현상 기구의 이해를 위하 여 이중 포텐샬우물 모델을 이용하였으며, 외부에서 가한 응력, 역방향 전장 및 온도상승에 따라 분극현 상을 나타내었다. 시효현상의 주 원인은 분극처리시 전장 방향으로 분역들이 정렬되면서 내부에 저장되 었던 잔유응력의 이완에 의한 분역계면의 운동에 있음을 간접적으로 확인하였다. 이러한 분역계면의 운 동은 열적 활성화 에너지를 갖는 시간에 의존하는 운동으로써 분극의 감소를 유발하며, 이것이 시효현 상으로 나타나는 것으로 사료된다.

  • PDF

A study on deep level defects of GaN by TSC

  • ;;;;;;Yuldashev
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.112-112
    • /
    • 2000
  • 직접 천이형 물질인 GaN는 그 연구가 활발히 진행되어 청색 발광 및 레이저 다이오드 구현을 이룩하였고, 열적인 안정성이 뛰어나 고온, 고출력 소자용으로도 주목받을 뿐 아니라, piezoelectric, acoustioptic modulators와 negative electron affinity devices와 같은 소자개발도 유망하다. 그러나 이렇게 다양한 응용과 물리적 특성에도 불구하고 깊은 준위의 불순물에 대한 문제는 해결되지 않은 상태이다. 많은 연구에도 불구하고 GaN에 존재하는 불순물의 성격과 그것들이 전도대에 미치는 영향에 관해서는 잘 이해되지 않고 있다. 본 연구에서는 MBE로 성장된 undoped GaN 박막의 깊은 준위에 대한 연구를 위하여 TSC 장치를 이용하여 GaN 깊은 준위를 분석하였다. TSC 실험은 77K에서 400K 사이 온도의 전류 변화를 관찰하였으며 깊은 준위의 활성화 에너지 및 포획 단면적 그리고 방출 진동수를 구하기 위하여 Initial rise method, Peak shape method, Heating rate method, Peak temperature method 등을 이용하였다. 또한 trap의 origin을 밝히기 위해서 수소화를 한후에 TSC 측정을 해보았다.

  • PDF

The Potential Energy Recovery and Thermal Degradation of Used Tire Using TGA (열분석법을 이용한 사용후 타이어의 열적 특성과 포텐셜 에너지의 회수)

  • Kim, Won-Il;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.135-146
    • /
    • 1999
  • The thermal degradation kinetics of SBR and tire were studied using a conventional thermogravimetric analysis in the stream nitrogen at a heating rate of 5, 10, 15, $20^{\circ}C/min$, respectively. Thermogravimetric curves and their derivatives were analyzed using various analytical methods to determine the kinetic parameters. The degradation of the SBR and tire was found to be a complex process which has multi-stages. The Friedman method gave average activation energies for the SBR and tire of 247.53kJ/mol and 230.00kJ/mol, respectively. Mean-while, the Ozawa method Eave 254.80kJ/mol and 215.76kJ/mol. It would appear that either. Friedman's differential method or Ozawa's integral method provided satisfactory mathematical approaches to determine the kinetic parameters for the degradation of the SBR and tire. Approximately 86% and 55% of oil products were obtained at a final temperature of $700^{\circ}C$ and a heating rate of $20^{\circ}C/min$ for the SBR and tire respectively.

  • PDF

Enhanced Flame Resistant Properties of Aluminum Hydroxide Addition on Electrospun Polyurethane Nanofibers (전기방사법에 의해 제조된 폴리우레탄 나노섬유의 수산화알루미늄 내첨에 의한 내염화 특성 향상)

  • Kim, Hyeong Gi
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.9-13
    • /
    • 2016
  • Anti-oxidation and flame resistant polyurethane nanofibers were prepared by electrospinning and aluminum hydroxide addition. Electrospinning was carried out under the following procedure conditions; applied voltage, 20 kV; polymer solution feeding rate, 1.2 ml/h; collector rolling speed, 120 rpm; and tip to collector distance, 15 cm. Aluminum hydroxide was added to the prepared polymer solution for electrospinning to enhance the oxidation and flame resistant properties. The thermal properties were investigated by thermogravimetric analysis to determine the polymer decomposition temperature, integral procedure decomposition temperature, final decomposition temperature, and remaining amount after thermal decomposition. The activated energy for polymer degradation was also investigated using the Horowitz-Metzger equation. The activation energy increased to more than 50%. The thermal properties of the polyurethane nanofibers were improved by a hydration reaction during the thermal decomposition of aluminum hydroxide around $300{\sim}500^{\circ}C$.

A Study on the Thermal Adsorption and Desorption Characteristics of Industrial Odorants using Activated Carbon (활성탄을 이용한 산업체 악취물질의 열적 흡탈착 연구)

  • Kim, Joo Yeon;Rhee, Young Woo;Han, Mun Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.551-555
    • /
    • 2012
  • Desorption reaction characteristics of the commercial activated carbons which were used for the removal of industrial odorants were investigated. BET specific surface area was analyzed to investigate the chemicophysical property of activated carbon. Adsorptivity of activated carbon was estimated by iodine number. Thermogravimetric analyzer (TGA) was used to investigate the desorption characteristics. Activation energies and reaction orders for reaction characteristics according to adsorption and desorption of activated carbons were estimated by employing the Friedman method and Freeman-Carroll method. Adsorptivity of reprocessed activated carbons were significantly lower than that of fresh activated carbons. In this study, it was found that the activation energies were 15.9~23.4 kJ/mol in Friedman method and 22.7~33.8 kJ/mol in Freeman-Carroll method.