• Title/Summary/Keyword: 열적발산원리

Search Result 7, Processing Time 0.018 seconds

Efficiency Analysis of Thermal Transpiration According to Back Pressure under Vacuum Condition (진공환경에서 열적발산원리의 배압에 따른 효율분석)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.76-79
    • /
    • 2007
  • From the previous researches about flow characteristic of micro-nozzle, we found that viscosity and back pressure induced heavy losses in micro nozzle. To overcome thess losses, we began to study new conceptual micro propulsion system that is thermal transpiration based micro propulsion system. It has no moving parts and can pump the gaseous propellant by temperature gradient only (cold to hot). Most of previous research on thermal transpiration is in its early stage and mainly studied for application to small vacuum facility or gas chromatography in ambient condition using nanoporous material like aerogel. In this study, we focus on basic research of propulsion system based on thermal transpiration using polyimide material in vacuum conditions.

  • PDF

Study of Micro Propulsion System Based on Thermal Transpiration (열적발산원리를 이용한 마이크로 추진장치에 대한 연구)

  • Jung, Sung-Chul;Shin, Kang-Chang;Kim, Youn-Ho;Kim, Hye-Hwan;Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.25-29
    • /
    • 2007
  • Minimization of conventional propulsion device has been studied for altitude control of micro satellite. We studied micro nozzle performance and found higher significant loss for a micro nozzle with smaller nozzle throat diameter. To overcome this loss, we proposed thermal transpiration based micro propulsion system. This new system has no moving parts and can control flow by temperature gradient, and this can be an option for potential new micro propulsion system.

  • PDF

Efficiency Analysis of Thermal Transpiration According to Knudsen Number for Application to Micro-propulsion System (마이크로 추진장치에 적용을 위한 누센수에 따른 열적발산원리의 효율분석)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.483-490
    • /
    • 2008
  • Minimization of nozzle induces many flow losses in micro-propulsion system. In this study, we studied about thermal transpiration based micro propulsion system to overcome these losses. Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the Knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. Experimental results showed that thick membranes are more effective than thin membranes in transition flow regime, and pressure gradient efficiency according to Knudsen number is increased to maximum 82% apart from membrane thickness in free molecular regime.

Mass flow rate of Knudsen pump According to Membrane Type for Micro Propulsion Applications (초소형 추진장치에 적용을 위한 누센펌프의 멤브레인 종류에 따른 질유량 특성)

  • Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.36-40
    • /
    • 2008
  • Minimization of nozzle induces many flow losses in micro-propulsion system. In this study, we studied about thermal transpiration based new conceptual micro propulsion system to overcome these losses. Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. In this paper, we compared mass flow rate of Knudsen pump by using different membrane type ; Polyimide and Hangi, Korean traditional paper.

  • PDF

Efficiency Analysis of Knudsen Pump According to Hanji Membrane (한지 멤브레인을 사용한 누센펌프의 효율 분석)

  • Yun, Dong-Ik;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.618-619
    • /
    • 2010
  • Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the Knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. In this paper, we measured presented pumping efficiency of Knudsen pump according to Hanji membrane.

  • PDF

Micro Propulsion under High Altitude Space Environments (우주진공환경에서의 마이크로 추진)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.405-408
    • /
    • 2008
  • From the previous researches about flow characteristic of micro-nozzle, we found that viscosity and back pressure induced heavy losses in micro nozzle. To overcome thess losses, we began to study new conceptual micro propulsion system that is thermal transpiration based micro propulsion system. It has no moving parts and can pump the gaseous propellant by temperature gradient only (cold to hot). Most of previous research on thermal transpiration is in its early stage and mainly studied for application to small vacuum facility or gas chromatography in ambient condition using nanoporous material like aerogel. In this study, we focus on basic research of propulsion system based on thermal transpiration using polyimide material in vacuum conditions.

  • PDF

Study of Knudsen Pump using Vacuum Chamber and It's Upgrade Plan to Thermal Vacuum Chamber (고고도 우주환경 모사용 진공챔버를 이용한 누센펌프의 연구와 열진공챔버로의 개선 방향)

  • Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.361-364
    • /
    • 2009
  • Vacuum facility is required for high altitude space environment test to develop small thruster to be applied for micro-satellite. After selecting vacuum equipment and integrating the chamber to simulate 100-120km attitude with max, $10^{-5}\;torr$. We tested the performance of high vacuum chamber. We designed, fabricated the knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum conditions. We described the upgrade plan to a thermal vacuum chamber.

  • PDF