• Title/Summary/Keyword: 열역학 모델

Search Result 287, Processing Time 0.033 seconds

Curl-based efficient constraint model for wet curly hair (젖은 곱슬머리를 표현하기 위한 컬 기반의 효율적인 제약 모델)

  • An, Jang Hoon;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.567-568
    • /
    • 2022
  • 헤어 시뮬레이션은 수많은 가닥으로 구성되어 있으며, 헤어 동역학을 기반으로 계산되기 때문에 일반적으로 계산양이 큰 범주에 속한다. 뿐만 아니라 곱슬머리 형태를 유지하려는 제약은 더 큰 계산을 요구하며, 본 논문에서는 수분에 의해 곱슬머리가 젖었을 때 표현되는 구부러짐과 수축을 모델링 할 수 있는 새로운 알고리즘을 제시한다. 이전 연구에서는 곱슬머리에 대한 헤어 시뮬레이션은 곱슬머리의 회전(Curl)형태를 유지하려는 알고리즘을 제안했지만, 강한 외력에 의한 회전형태만을 유지하려고 했으며, 수분이나 열에 의한 곱슬머리의 상태변화는 고려하지 못했다. 따라서 본 논문에서는 IIR(Infinite impulse response) 필터로 스무딩된 헤어 커브를 따라 회전의 수직 성분을 추출하여 회전의 세로방향 신축성을 제어할 수 있는 방법을 제안한다. 우리의 헤어 모델은 곱슬머리의 회전과 신축성을 제어하기 위해 스프링 동역학을 사용하며, 젖은 헤어의 부분적인 상태 변화에도 안정적으로 표현할 수 있음을 보여준다.

  • PDF

Prediction of Battery Package Temperature Rise with LSTM(Long Short-Term Memory) (LSTM(Long Short-Term Memory)을 활용한 Battery Package 온도 상승 예측)

  • Cho Jong Hwa;Min Youn A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.339-341
    • /
    • 2024
  • 본 논문에서는 전기 자동차 배터리 팩 설계에서 성능 예측을 위해 전산유체해석 및 Long Short-Term Memory (LSTM)를 활용한다. 두 계산 모두의 예측이 상당한 유사성을 나타내며, 전산유체해석은 시스템 유체 역학을 고려한 상세한 물리 모델을 제공하고, LSTM은 시계열 데이터를 기반으로 한 딥러닝 모델로 효과적으로 패턴을 파악, 향후 온도 상승을 예측한다. 결과는 두 접근 모두가 효과적인 예측을 제공하며 향후 전기 자동차 배터리 팩 설계 및 최적화에서 종합적인 접근의 필요성을 강조한다. 특히, LSTM 기반 예측에 소요되는 시간은 계산 유체 역학의 약 25%로, 약 일주일 정도로 빠르게 확인 가능하다. 이는 현대 산업 환경에서 시간적 효율성이 중요한 측면을 강조하며, 계산 유체 역학의 상세한 물리 모델링과 LSTM의 빠른 예측 속도를 결합한 설계 방법론을 제안한다.

  • PDF

A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes (수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-517
    • /
    • 1995
  • A mechanistic model for forced convective transition boiling has been developed to predict transition boiling heat flux realistically. This model is based on a postulated multi­stage boiling process occurring during the passage time of an elongated vapor blanket specified at a critical heat flux condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling. The total heat transfer rate during the transition boiling is the sum of the heat transfer rates after the DNB weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. From these comparisons, it can be seen that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are nil predicted at low qualities/high pressures near 10 bar.

  • PDF

Effect of Thermal Properties of Bentonite Buffer on Temperature Variation (벤토나이트 완충재의 열물성이 온도 변화에 미치는 영향)

  • Kim, Min-Jun;Lee, Seung-Rae;Yoon, Seok;Jeon, Jun-Seo;Kim, Min-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • A buffer in a geological disposal system minimizes groundwater inflow from the surrounding rock and protects the disposed high-level waste (HLW) against any mechanical impact. As decay heat of a spent fuel causes temperature variation in the buffer that affects the mechanical performance of the system, an accurate estimation of the temperature variation is substantial. The temperature variation is affected by thermal and material properties of the system such as thermal conductivity, density and specific heat capacity of the buffer, and thus these factors should be properly included in the design of the system. In particular, as the thermal properties are variable depending on the density and water content of the buffer, consideration of the effects should be included in the analysis. Hence, in this study, a numerical model based on finite element method (FEM) which is able to consider the change of density and water content of the buffer was established. In addition, using the numerical model, a parametric study was conducted to investigate the effect of each thermal property on the temperature variation of the buffer.

A multilayer Model for Dynamics of Upper and Intermediate Layer Circulation of the East Sea (동해의 상, 중층 순환 역학에 대한 다층모델)

  • 승영호;김국진
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 1995
  • A simple layer model based on isophcnal coordinate is applied to the East Sea to examine the dynamics of circulation. The results confirm the existing knowledge about role of inflow-outflow and wind in driving the circulation. It is found, however, that the buoyancy flux generates quite different circulation pattern; it enhances the inflow-outflow driven circulation and has a convective nature. The circulation considering all these effects resembles the schematic one presently known. In the circulation, the intermediate layer is outcropped in the north off the northern boundary, ventilated here and flows cyclonically in the northern part of basin. This water, however, does not flow southward directly because of the strong eastward (separating from the coast) current in the layer above. This water also loses its potential vorticity while traveling around the periphery of the outcropping region and is thus characterized by minimum potential vorticity in the interior of the basin.

  • PDF

Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model (열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석)

  • Kim, Hyunwoo;Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.297-307
    • /
    • 2014
  • Cavern Thermal Energy Storage system stores thermal energy in caverns to recover industrial waste heat or avoid the sporadic characteristics of renewable-energy resources, and its advantages include high injection-and-extraction powers and the flexibility in selecting a storage medium. In the present study, the structural stability of rock mass pillar between these silo-type storage caverns was assessed using a coupled thermal-mechanical model in $FLAC^{3D}$. The results of numerical simulations showed that thermal stresses due to long-term storage depended on pillar width and had significant effect on the pillar stability. A sensitivity analysis of main factors indicated that the influence on the pillar stability increased in the order cavern depth < pillar width < in situ condition. It was suggested that two identical caverns should be separated by at least one diameter of the cavern and small-diameter shaft neighboring the cavern should be separated by more than half of the cavern diameter. Meanwhile, when the line of centers of two caverns was parallel to the direction of maximum horizontal principal stress, the shielding effect of the caverns could minimize an adverse effect caused by a large horizontal stress.

Water temperature prediction of Daecheong Reservoir by a process-guided deep learning model (역학적 모델과 딥러닝 모델을 융합한 대청호 수온 예측)

  • Kim, Sung Jin;Park, Hyungseok;Lee, Gun Ho;Chung, Se Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.88-88
    • /
    • 2021
  • 최근 수자원과 수질관리 분야에 자료기반 머신러닝 모델과 딥러닝 모델의 활용이 급증하고 있다. 그러나 딥러닝 모델은 Blackbox 모델의 특성상 고전적인 질량, 운동량, 에너지 보존법칙을 고려하지 않고, 데이터에 내재된 패턴과 관계를 해석하기 때문에 물리적 법칙을 만족하지 않는 예측결과를 가져올 수 있다. 또한, 딥러닝 모델의 예측 성능은 학습데이터의 양과 변수 선정에 크게 영향을 받는 모델이기 때문에 양질의 데이터가 제공되지 않으면 모델의 bias와 variation이 클 수 있으며 정확도 높은 예측이 어렵다. 최근 이러한 자료기반 모델링 방법의 단점을 보완하기 위해 프로세스 기반 수치모델과 딥러닝 모델을 결합하여 두 모델링 방법의 장점을 활용하는 연구가 활발히 진행되고 있다(Read et al., 2019). Process-Guided Deep Learning (PGDL) 방법은 물리적 법칙을 반영하여 딥러닝 모델을 훈련시킴으로써 순수한 딥러닝 모델의 물리적 법칙 결여성 문제를 해결할 수 있는 대안으로 활용되고 있다. PGDL 모델은 딥러닝 모델에 물리적인 법칙을 해석할 수 있는 추가변수를 도입하며, 딥러닝 모델의 매개변수 최적화 과정에서 Cost 함수에 물리적 법칙을 위반하는 경우 Penalty를 추가하는 알고리즘을 도입하여 물리적 보존법칙을 만족하도록 모델을 훈련시킨다. 본 연구의 목적은 대청호의 수심별 수온을 예측하기 위해 역학적 모델과 딥러닝 모델을 융합한 PGDL 모델을 개발하고 적용성을 평가하는데 있다. 역학적 모델은 2차원 횡방향 평균 수리·수질 모델인 CE-QUAL-W2을 사용하였으며, 대청호를 대상으로 2017년부터 2018년까지 총 2년간 수온과 에너지 수지를 모의하였다. 기상(기온, 이슬점온도, 풍향, 풍속, 운량), 수문(저수위, 유입·유출 유량), 수온자료를 수집하여 CE-QUAL-W2 모델을 구축하고 보정하였으며, 모델은 저수위 변화, 수온의 수심별 시계열 변동 특성을 적절하게 재현하였다. 또한, 동일기간 대청호 수심별 수온 예측을 위한 순환 신경망 모델인 LSTM(Long Short-Term Memory)을 개발하였으며, 종속변수는 수온계 체인을 통해 수집한 수심별 고빈도 수온 자료를 사용하고 독립 변수는 기온, 풍속, 상대습도, 강수량, 단파복사에너지, 장파복사에너지를 사용하였다. LSTM 모델의 매개변수 최적화는 지도학습을 통해 예측값과 실측값의 RMSE가 최소화 되로록 훈련하였다. PGDL 모델은 동일 기간 LSTM 모델과 동일 입력 자료를 사용하여 구축하였으며, 역학적 모델에서 얻은 에너지 수지를 만족하지 않는 경우 Cost Function에 Penalty를 추가하여 물리적 보존법칙을 만족하도록 훈련하고 수심별 수온 예측결과를 비교·분석하였다.

  • PDF

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior (Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석)

  • Lee, Jae Owan;Birch, Kenneth;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.372-382
    • /
    • 2013
  • Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models (미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In order to predict the thermoelastic behavior of porous composites, poroelastic parameters are measured by using micromechanics-based finite element models. The expanding deformation caused by pore pressure, and the degradation of homogenized elastic moduli with pores are calculated for the assessment of the poroelastic parameters. Various representative volume elements considering the shape, size, and array pattern of pores are modeled and analyzed by a finite element method. The effects of porosity and material anisotropy, and the distribution of stain energy density are investigated carefully. In addition, the measured poroelastic parameters are verified by predicting the thermo-pore-elastic behavior of carbon/phenolic composites.