• 제목/요약/키워드: 열성층유동

검색결과 24건 처리시간 0.022초

가압기 밀림관 수평배관 외부 가열에 의한 열성층 유동 완화 수치해석 (Numerical analysis for mitigating thermal stratification flow of pressurizer surge horizontal pipe by outside heating)

  • 정일석;김유
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.670-678
    • /
    • 1997
  • A method to mitigate the thermal stratification phenomenon of pressurizer surge line is proposed by heating bottom outside of horizontal pipe. Unsteady two dimensional model has been used to numerically investigate an effect of heating the bottom of pipe. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature and streamline profiles of fluids and pipe walls with time are compared with the previous study result. The numerical result of this study shows that the outside heating can relaxate the thermal stratification flow of the pressurizer surge line. Maximum dimensionless temperature difference between hot and cold sections of the pipe inner wall which causes thermal stratification was reduced from 0.514 to 0.424 at dimensionless time 1, 632 and 1, 500 respectively.

원형 T분기배관 내 누설유동의 열성층화와 난류침투에 관한 전산해석적 연구 (Numerical Analysis of Thermal Stratification and Turbulence Penetration into Leaking Flow in a Circular Branch Piping)

  • 한성민;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1833-1838
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack(TFC) accident. In the present study, when the turbulence penetration occurs in the branch piping, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine

  • PDF

원전 안전주입배관에서의 열성층 유동해석 (Analysis for the Behavior of Thermal Stratification in Safety Injection Piping of Nuclear Power Plant)

  • 박만흥;김광추;염학기;김태룡;이선기;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.110-114
    • /
    • 2001
  • A numerical analysis has been perfonned to estimate the effect of turbulent penetration and thermal stratified flow in the branch lines piping. This phenomenon of thermal stratification are usually observed in the piping lines of the safety related systems and may be identified as the source of fatigue in the piping system due to the thermal stress loading which are associated with plant operating modes. The turbulent penetration length reaches to $1^{st}$ valve in safety injection piping from reactor coolant system (RCS) at normal operation for nuclear power plant when a coolant does not leak out through valve. At the time, therefore, the thermal stratification does not appear in the piping between RCS piping and $1^{st}$ valve of safety injection piping. When a coolant leak out through the $1^{st}$ valve by any damage, however, the thermal stratification can occur in the safety injection piping. At that time, the maximum temperature difference of fluid between top and bottom in the piping is estimated about $50^{\circ}C$.

  • PDF

배관계통에서의 열성층 현상 모사를 위한 수치해석 (Numerical Analyses to Simulate Thermal Stratification Phenomenon in a Piping System)

  • 정재욱;김선혜;장윤석;최재붕;김영진;김진수;정해동
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.381-388
    • /
    • 2009
  • In some portions of nuclear piping systems, stratification phenomena may occur due to the density difference between hot and cold stream. When the temperature difference is large, the stratified flow under diverse operating conditions can produce high thermal stress, which leads to unanticipated piping integrity issues. The objectives of this research are to examine controvertible numerical factors such as model size, grid resolution, turbulent parameters, governing equation, inflow direction and pipe wall. Parametric three-dimensional computational fluid dynamics analyses were carried out to quantify effects of these parameters on the accuracy of temperature profiles in a typical nuclear piping with complex geometries. Then, as a key finding, it was recommended to use optimized mesh of real piping with the conjugated heat transfer condition for accurate thermal stratification analyses.

난류침투가 사각단면 T분기관 내 누설유동에 의해 발생한 열성층 현상에 미치는 영향 (The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Leaking Flow in a T-Branch of Square Cross-Section)

  • 홍석우;최영돈;박민수
    • 설비공학논문집
    • /
    • 제15권3호
    • /
    • pp.239-245
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. $textsc{k}$-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of the main flow in the duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from the main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Ice Ball을 내장(內裝)한 빙축열조내(氷蓄熱槽內)의 열유동(熱流動) 특성(特性)에 관한 실험적(實驗的) 연구(硏究) (An Experimental Study on Characteristics of Heat Flow in the Cylindrical Storage Tank with Ice Ball)

  • 장영근;이원섭;박정원
    • 태양에너지
    • /
    • 제18권1호
    • /
    • pp.99-109
    • /
    • 1998
  • 공기조화 설비에 있어서 시스템의 성능을 향상시키고 에너지의 유효이용 및 경제성을 높일 수 있는 빙축열 시스템에 대한 연구이다. Ice Ball을 내장한 빙축열조를 횡형 사각형과 입형 원통형 축열조에 대하여 조내로 유입하는 브라인의 유량(2, 4, 6LPM)과 온도(-3, -5, $-7^{\circ}C$)를 변화시키고, 또한 유입 브라인의 유동을 상 하향유동으로 하면서 빙축열조내의 온도분포를 파악하여 열유동 특성 및 빙충전율에 대하여 고찰하였다. 연구결과 빙축열조내 열성층을 향상시키기 위해서는 조내 유입 브라인의 유동이 상향 압출흐름이어야 한다는 것을 알았다.

  • PDF

원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석 (Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident)

  • 황경모;진태은;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.51-54
    • /
    • 2002
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with an design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated coolant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF

열성층 온수저장시스템의 효율적 이용에 관한 실험적 연구 (Experimental Study on the Effective Use of Thermally Stratified Hot Water Storage System)

  • 박이동
    • 태양에너지
    • /
    • 제13권2_3호
    • /
    • pp.45-52
    • /
    • 1993
  • 현열저장에서 열성층의 이점을 태양열 주택에 적용해보았다. 성층으로 인하여 에너지 입력의 열이용 효율이 증가되는 효과가 논의되었고, 실험과 시뮤레이션을 통하여 설명되었다. 성층을 촉진시키기 위하여 Distributor를 사용하였으며, 본 실험에서 Q=8 liter/min, ${\Delta}T=40^{\circ}C$일 때, 최대 90%의 열이용 효율을 얻을 수 있었다. 한편 성층을 촉진시키기 위하여 Distributor의 적은 구멍에서 나오는 유동(속도와 압력)이 같게 제작할 수만 있다면 그 이상의 열이용효율도 얻을 수 있음이 입증되었다.

  • PDF

Elliptic Blending Model의 평가 (EVALUATION OF ELLIPTIC BLENDING MODEL)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.105-110
    • /
    • 2005
  • Evaluation of elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The algebraic flux model is used for treating the turbulent heat flux. There exist much differences between turbulence models in predicting the temporal variation of temperature. The V2-F model and the EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

이차모멘트 난류모델을 사용한 성층화된 자연대류 유동 해석 (ANALYSIS OF A STRATIFIED NATURAL CONVECTION FLOW WITH THE SECOND-MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.55-61
    • /
    • 2007
  • A computational study on a strongly stratified natural convection is performed with the elliptic blending second-moment closure. The turbulent heat flux is treated by both the algebraic flux model (AFM) and the differential flux model (DFM). Calculations are performed for a turbulent natural convection in a square cavity with conducting top and bottom walls and the calculated results are compared with the available experimental data. The results show that both the AFM and DFM models produce very accurate solutions with the elliptic-blending second-moment closure without invoking any numerical stability problems. These results show that the AFM and DFM models for treating the turbulent heat flux are sufficient for this strongly stratified flow. However, a slight difference between two models is observed for some variables.