• Title/Summary/Keyword: 열선

Search Result 325, Processing Time 0.027 seconds

New technologies on hot wire anemometry (열선유속계의 신기술)

  • 고상근;이신표
    • Journal of the KSME
    • /
    • v.33 no.9
    • /
    • pp.793-802
    • /
    • 1993
  • 이 글에서는 부 온도저항계수를 갖는 탄소파이버를 열선으로 이용하고 이를 구동한는 증폭회로의 구성에 관한 연구, 3차원 속도측정용 열선프로브의 접지단자를 3개의 열선이 공통으로 사용하는 공통접지 삼축 열선프로브와 유속계의 특성에 대해 고찰한다. 또한 과열비가 다른 두 개의 저 온도형 열선 유속계를 이용하여 유동장의 온도와 속도를 동시에 측정한는 방법과 임의 형태의 유체온도정보를 이용한 열선유속계의 일반적인 온도보상방법에 관하여 논의하여 열선유속계의 원리와 그 응용 등을 간단히 설명함으로써 관심 있는 분들의 이해를 돕고자 한다.

  • PDF

Fire Cause Analysis of Local Heating on Carbon Type Hot Wire Electric Pad (카본열선을 사용하는 전기장판의 국부가열에 의한 화재원인 분석)

  • Song, Jae-Yong;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.104-108
    • /
    • 2010
  • This paper describes electrical fire on electric pad using carbon type hot wires. A carbon type hot wires electric pad is virtually impossible to connect hot wire as a method of electrical welding or soldering. In order to connect between hot wires, that has to splice carbon type material connector. If junction of hot wires was occurrence of poor connection on electric pad, it increase contact resistance on this junction point. With increasing contact resistance, junction of hot wires on electric pad generates local heating and finally leads to electrical fire. In this paper, we analyzed shape of damage in hot wires caused by electrical local heating and investigated fire cause on electric pad using by carbon type hot wires.

Effect of Insulation Coating on Start Time of Linear Region for Transient Hot-wire Method (비정상열선법에서 열선의 절연코팅이 선형구간의 초기시점에 미치는 영향)

  • Lee, Seung-Hyun;Kim, Hyun Jin;Kim, Kyu Han;Park, Yong-Jun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1147-1152
    • /
    • 2013
  • In this study, the effect of an insulation coating on the start time of a linear region is theoretically investigated when an insulation-coated hot-wire is used for the transient hot-wire method (THWM). For this purpose, important parameters affecting the start time of the linear region are presented from an analytical solution of temperature-rise for an insulation-coated hot-wire. Furthermore, a critical time to ignore the influence of important parameters is studied. The theoretical results indicate that the effect of the insulation coating rapidly disappears with a decrease in the wire radius, coating thickness, thermal diffusivity of insulation material or an increase in the thermal conductivity of the insulation material. The results of this study will be helpful for selecting a proper start time of the linear region for the THWM using insulation-coated hot-wires.

A Study on the Effect of Hot Lines and the Assembly of Flange for a Refrigerator to Reduce Dew Generation (냉장고 Flange부 이슬 맺힘 방지를 위한 열선의 영향 및 조립에 관한 연구)

  • Kim, Na Hyun;Cho, Jong Rae;Park, Sang Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.391-396
    • /
    • 2015
  • When the temperature of a flange in a refrigerator is reduced to the dew point, condensation is generated on the flange. Generally, hot lines, having a temperature of $35^{\circ}C$, are located near the flange to increase its surface temperature above the dew point. Hot lines are installed in close contact with the flange in order to increase the heat transfer from the hot lines to the flange surface. Through this work, the effects of the hot line shape and installation conditions, including a gap between the hot line and flange, and the function of a spacer in the inner case of the refrigerator were investigated. Additionally, an optimal shape of the inner case for easy assembling is proposed considering the contact between the hot line and flange.

Ignition Temperature of Hydrogen/Air Mixture by Hot Wire in Pipeline (열선에 의한 파이프라인내의 수소/공기 혼합기의 착화온도)

  • Kim, Dong-Joon
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.8-13
    • /
    • 2014
  • In order to improve safety for hydrogen network infrastructure, the ignition temperature by hot wire was investigated for different hydrogen compositions in pipelines. The result shows that minimum temperature for ignition decreased with decreasing hydrogen composition. The minimum temperature was confirmed at a hydrogen composition of approximately 10 vol.%. The one of the reasons is supposed that buoyancy force should generate the convection of gas mixture. It was also found that humidity had a little effect on ignition temperature, flame temperature.

Development of a New Sensor with Divided Multiple Long and Short Wires in Transient Hot-wire Technique (다수의 분할된 긴 열선과 짧은 열선을 갖는 새로운 비정상열선법 센서개발)

  • Lee, Shin-Pyo;Lee, Myung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.510-517
    • /
    • 2004
  • A fine hot-wire is used both as a heating element and a temperature sensor in transient hot-wire method. The traditional sensor system is unnecessarily big so that it takes large fluid volume to measure the thermal conductivity. To dramatically reduce this fluid volume, a new sensor fabrication and a data processing method are proposed in this article. Contrast to the conventional and most popular two wire sensor, the new sensor system is made up of divided multiple long and short wires. Through validation experiments, it is found that the measured thermal conductivities of the glycerin are exactly same each other between the conventional and proposed new method. Also some technical considerations in arranging the multiple wires are briefly discussed.

A study on the development of constant temperature hot wire type air flow meter for automobiles (자동차용 정온도 열선식 공기유량계의 개발에 관한 연구)

  • 조성권;유정열;고상근;김동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2407-2414
    • /
    • 1992
  • Constant temperature hot wire air flow meter for automobiles requires temperature compensation system because hot wire output signal is sensitive to ambient temperature variations as well as fluid velocity. The objectives of the present study are to design an air flow meter circuit which is capable of compensating the hot wire output signal for ambient temperature variations and to investigate the mechanism of such temperature compensation. This circuit is composed of platinum hot wire, platinum resistor, two variable resistors, a constant resistor and a DC-amplifier. In particular, by simply replacing a constant resistor in one of the bridge arms of the conventional circuit with platinum resistor and a variable resistor for the purpose of temperature compensation, the deviation of output signal with respect to ambient temperature variations between 27deg. C 70deg. C could be reduced to less than 2.5% for mass flow rate and to less than 5% for velocity respectively. The mechanism of temperature compensation against ambient temperature variations was explained by means of measuring the heat transfer coefficient with hot wire temperature variations and analyzing and analyzing conventional empirical equations qualitatively.

Sensitivity Enhancement of a Hot-Wire Anemometer by Changing Overheat Ratio with Velocity (유속에 따른 열선의 과열비 조정을 통한 열선유속계의 감도향상에 관한 연구)

  • ;;Kauh, S. K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2678-2689
    • /
    • 1995
  • In this study, a new hot-wire anemometer which has greater sensitivity than that of a constant temperature anemometer (CTA) was proposed. In contrast to CTA, the wire working resistance of the new anemometer increases with flow velocity, that is, the operating mode of the wire becomes variable temperature. The variable temperature anemometer(VTA) was made by substituting a voltage controlled variable resistor such as photoconductive cell or transistor for one of the resistors in the bridge. By positively feeding back the bridge top signal to the input side of these electronic components, the wire overheat ratio could be increased with velocity automatically. Static response analyses of the VTA, constant voltage anemometer (CVA) and CTA were made in detail and calibration experiments were performed to validate the proposed operating principle. The wire operating resistance of the CVA decreases with velocity and this leads to lower sensitivity than that of a CTA. But the sensitivity of the newly proposed VTA is superior to that of a CTA, since the wire overheat ratio increases with velocity. Consequently, it is found that the major factor that is responsible for large sensitivity of a VTA is not the working resistance itself but the change of the wire working resistance with velocity.

원적외선 가공

  • 이영희;김문식
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.71-77
    • /
    • 1996
  • 최근 원적외선에 대한 붐이 일고 있다. 그 원인은 다양하게 생각할 수 있지만 주요한 원인은 무엇보다도 불황을 타개하려는 기업의 신규사업이다. 특히 섬유 업계에 있어서는 종래의 제품만으로는 발전이 없고, 그 존속마저도 위태로운 상황이다. 이와 같은 배경 아래 섬유 관련 업계에서는 새로운 기능을 부여한 상품의 개발에 여념이 없다. 이들 기능성 섬유의 하나가 원적외선 섬유이다. 원적외선은 1800년 독일 과학자 하셀이 태양광을 스펙트럼으로 나누는 연구 중 눈에 보이는 파장중 적색의 외측에서도 한온계에 감지되는 열선이 있는 것을 발견했다. 그 열선은 눈에는 보이지 않지만 적색광보다는 한온계의 온도 상승이 큰 것을 알았다. 적색광 외측에 있는 열선으로 다른 사람들은 이것을 적외선이라 불렀지만 맥스웰에 의해서 적색광도 적외선과 같은 전자파로서 이론 체계를 붙이게 되었다.

  • PDF

Design of Chamber in Continuous Furnace for Uniform Temperature Distribution (균일 온도를 유지하는 연속 소성로 체임버의 설계)

  • Lee, Kwangju;Choi, Joon Hyeok;Jang, Han Seul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5344-5351
    • /
    • 2013
  • Chambers in a continuous furnace were designed. A chamber consists of inlets and outlets of nitrogen gas which is used to discharge burned gas and heating pipes (HP) which are used to keep temperature of fired materials at $1,300^{\circ}C$. Design variables were numbers of inlets and outlets, distance between floor and lower HP ($h_1$), distance between lower HP and fired materials ($h_2$), distance between fired materials and upper HP ($h_3$), temperature of HP, numbers of HP and distance between HP. The numbers of inlets and outlets were determined so that nitrogen gas formed a laminar flow for efficient discharge. All other design variables were determined so that temperature of fired materials is as uniform as possible near $1,300^{\circ}C$. Chambers were produced and temperature was measured at 21 points using thermocouples. The largest deviation from $1,300^{\circ}C$ was less than ${\pm}2.2^{\circ}C$.