• Title/Summary/Keyword: 열분석적 특성

Search Result 2,493, Processing Time 0.046 seconds

Improved Performance of Direct Carbon Fuel Cell by Catalytic Gasification of Ash-free Coal (무회분탄 연료의 촉매 가스화에 의한 직접탄소연료전지의 성능 향상)

  • Jin, Sunmi;Yoo, Jiho;Rhee, Young Woo;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.426-431
    • /
    • 2012
  • Carbon-rich coal can be utilized as a fuel for direct carbon fuel cell (DCFC). However, left-behind ash after the electrochemical oxidation may hinder the electrochemical reactions. In this study, we produced ash-free coal (AFC) by thermal extraction and then tested it as a fuel for DCFC. DCFC was built based on solid oxide electrolyte and the electrochemical performance of AFC mixed with $K_2CO_3$ was compared with AFC only. Significantly enhanced power density was found by catalytic steam gasification of AFC. However, an increase of the power density by catalytic pyrolysis was negligible. This result indicated that a catalyst activated the steam gasification reactions, producing much more $H_2$ and thus increasing the power density, compared to AFC only. Results of a quantitative analysis showed much improved kinetics in AFC with $K_2CO_3$ in agreement with DCFC results. A secondary phase of potassium on yttria-stabilized zirconia (YSZ) surface was observed after the cell operation. This probably caused poor long-term behavior of AFC with $K_2CO_3$. A thin YSZ (30 ${\mu}m$ thick) was found to be higher in the power density than 0.9 mm of YSZ.

패턴 사파이어 기판 위에 AlN 중간층을 이용한 GaN 에피성장

  • Kim, Nam-Hyeok;Lee, Geon-Hun;Park, Seong-Hyeon;Kim, Jong-Hak;Kim, Min-Hwa;Yu, Deok-Jae;Mun, Dae-Yeong;Yun, Ui-Jun;Yeo, Hwan-Guk;Mun, Yeong-Bu;Si, Sang-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.123-123
    • /
    • 2010
  • 3족 질화물계 물질은 발광다이오드와 같은 광전자소자적용에 있어서 매우 우수한물 질이다.일반적으로, GaN 에피 성장에 있어서 저온 중간층을 삽입한 2 단계 성장 방법은 낮은 결함밀도와 균일한 표면을 얻기 위해 도입된 기술이다. 특히 AlN 중간층은 GaN 중간층과 비교하였을 때 결정성뿐만 아니라 높은 온도에서의 열적안정성, GaN 기반의 자외선 검출기서의빛 흡수 감소 등의 장점을 가지고 있다. 또한 패턴 사파이어 기판위 GaN 에피 성장은 측면성장 효과를 통해 결함 밀도 감소와 광 추출 효율을 향상시키는 것으로 알려져 있다.또한 열응력으로 인한 기판의 휨 현상은 박막성장중 기판의 온도 분포를 불균일하게 만드는 원인이 되며 이는 결국 박막 조성 및 결정성의 열화를 유도하게 되고 최종적으로 소자특성을 떨어 뜨리는 원인이 되는데 AlN 중간층의 도입으로 이것을 완화시킬 수 있는 효과가 있다. 하지만, AlN 중간층이 패턴된 기판 위에 성장시킨 GaN 에피층에 미치는 영향은 명확하지 않다. 본 연구팀은 일반적인 c-plane 사파이어 기판과 플라즈마 건식 에칭을 통한 렌즈 모양의 패턴된 사파이어 기판을 이용해서 AlN 중간층과 GaN 에피층을 유기금속 화학기상증착법으로 성장하였다. 특히, 렌즈 모양의 패턴된 사파이어 기판은 패턴 모양과 패턴 밀도가 성장에 미치는 영향을 연구하기 위해 두가지 패턴의 사파이어 기판을 이용하였다. AlN 중간층 두께를 조절함으로써 최적화된 GaN 에피층을 90분까지 4단계로 시간 변화를 주어 성장 양상을 관찰한 결과, GaN 에피박막의 성장은 패턴 기판의 trench 부분에서 시작하여 기판의 패턴부분을 덮는 측면 성장을 보이고있다. 또한 TEM과 CL을 통해 GaN 에피박막의 관통 전위를 분석해 본 결과 측면 성장과정에서 성장 방향을 따라 옆으로 휘게 됨으로 표면까지 도달하는 결정결함의 수가 획기적으로 줄어드는 것을 확인함으로써 고품질의 GaN 에피층을 성장시킬 수 있었다. 그리고 패턴밀도가 높고 모양이 볼록할수록 측면 성장 효과로 인한 결정성 향상과 난반사 증가를 통한 임계각 증가로 광추출 효율이 향상 되는 것을 확인할 수 있었다. 이러한 결과를 바탕으로 최적화된 AlN 중간층을 이용하여 패턴 기판위에서 고품질의 GaN 에피층을 성장시킬 수 있었다.

  • PDF

A Study for Performance Improvement of Fire Detector and Sprinkler Head in Apartment Houses (공동주택 화재감지 및 소화성능개선에 관한 연구)

  • Lee, Chae-Won;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This study suggested the problems and their improvement measures for the operation of fire detectors and sprinkler heads installed at apartment houses. According to a census on population and housing in 2010, apartment houses account for 71.6% of the total housing facilities. And by fire statistics data of the National Emergency Management Agency, approximately 25.0% of fire accidents and 46.4% of casualties occur at apartment houses every year. Therefore, this study conducted for identifying the causes and characteristics of fire to establish the fire safety improvement measures for apartment houses. And this study was carried out virtual fire simulation at domestic apartment houses. The scenario of the simulation contains a comparative analysis on the operation time of standard sprinkler heads and residential sprinkler heads, heat detectors and smoke detectors. As a result of simulation, it was found that standard sprinkler heads and heat detectors installed at the existing apartment houses should be replaced with residential sprinkler heads and smoke detectors for rapid fire suppression. In addition, sprinkler systems should be considered to be installed for excluded floor at apartment houses. Especially, it is necessary to construct remote inspect systems like advanced countries for efficiency of apartment houses safety management.

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.

Determination of acoustic emission signal attenuation coefficient of concrete according to dry, saturation, and temperature condition (포화유무 및 온도조건에 따른 콘크리트 음향방출 신호 감쇠계수 결정)

  • Lee, Hang-Lo;Hong, Chang-Ho;Kim, Jin-Seop;Kim, Ji-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.39-55
    • /
    • 2022
  • This study carried out the laboratory tests for AE signal attenuation to determine the attenuation coefficient (α) of silo concrete in Gyeongju low and intermediate-level disposal environments. The concrete samples were prepared by satisfying the concrete mixing ratio used in the Gyeongju disposal silo, and these samples were additionally exposed depending on the temperature conditions and saturation and, dry condition. As a result of attenuation tests according to the transmission distance on three concrete specimens for each disposal condition, the AE amplitude and absolute energy measured on the saturated concrete were higher than that of the dry concrete in the initial range of the signal transmission distance, but the α of the saturated concrete was higher than that of the dry concrete. Regardless of the saturation and dry conditions, the α tended to decrease as the temperature increases. The α had a more major influence on the saturation and dry condition than the temperature condition, which means that the saturation and dry condition is the main consideration in measuring the signal attenuation of a concrete disposal structure. The α of concrete in the disposal environment expect to be used to predict the integrity of silos concrete in Gyeongju low and intermediate-level disposal environments by estimating the actual AE parameter values at the location of cracks and to determine the optimum location of sensors.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

A Study to Increase Methane Ratio of Landfill Gas by Capturing Carbon Dioxide (매립지가스의 메탄 비율 증가를 위한 이산화탄소 포집 연구)

  • Bada Kim;Junghyun Park;Sungwoon Choi;Youngchul An;Daeyup Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.25-31
    • /
    • 2023
  • The purpose of this study is to increase the thermal efficiency of a landfill gas (LFG) power generation engine by capturing carbon dioxide (CO2) from landfill gas (LFG) using monoethanolamine (MEA), which is widely used in the chemical CO2 absorption process. Since the use of LFG as an energy source can be a means of reducing greenhouse gas emissions, MEA can be used to reduce CO2 in LFG and increase the concentration of CH4 to improve the efficiency of power generation. In this study, experiments were conducted to measure the solubility of CO2 and CH4 in MEA solution, increase the solubility under different conditions, and analyse the dissolution characteristics. It was found that the CO2 absorption rate increased as the ratio of MEA to reaction gas increased. There is an optimum MEA concentration to maximise CO2 solubility, and even if the concentration is increased above this concentration, the solubility does not improve significantly. This study provided fundamental work to develop a more practical fuel by capturing CO2 from LFG and increasing the concentration of CH4 while reducing greenhouse gas emissions.

Numerical Simulation of Salinity Intrusion into Groundwater Near Estuary Barrage with Using OpenGeoSys (OpenGeoSys를 이용한 하굿둑 인근 지하수 내 염분 침투 수치모의)

  • Hyun Jung Lee;Seung Oh Lee;Seung Jin Maeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • The estuary dam is a structure installed and operated in a closed state except when flood event occurs to prevent inland saltwater intrusion and secure freshwater supply. However, the closed state of dam leads to issues such as eutrophication, so it is necessary to examine the extent of saltwater intrusion resulting from the opening of sluice gates. Groundwater, due to its subsurface conditions and slow flow characteristics, is widely analyzed using numerical models. OpenGeoSys, an open-source software capable of simulating Thermal- Hydraulic- Mechanical- Chemical phenomena, was adopted for this study. Simulations were conducted assuming natural flow conditions without dam and operating considering busy farming season, mostly from March to September. Verification of the model through analytical solutions showed error of 3.7%, confirming that OpenGeoSys is capable of simulating saltwater intrusion for these cases. From results simulated for 10 years, considering for the busy farming season, resulted in about 46% reduction in saltwater intrusion length compared to natural flow conditions, approximately 74.36 m. It may be helpful to make choices to use groundwater as a water resource.

An Examination of the Fire Behavior of Pinus densiflora Fuel Beds with Thinning Intensity (간벌강도별 지표연료량에 따른 소나무 화염특성 분석)

  • Ye-Eun Lee;Jae Hak Song;Sangjun Im;Kyung Nam Kwon;Chun Geun Kwon
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.3
    • /
    • pp.308-318
    • /
    • 2024
  • Forest fuel management plays a crucial role in the proper management of frequent and large-scale forest fires worldwide. This study evaluated the impact of fuel management on reducing forest fire risk by through surface fire behavior through laboratory experiments and simulations using the Wildland Fire Dynamics Simulator. For Pinus densiflora litter, fuel conditions were established based on field surveys in Goseong-gun, Gangwon-do, focusing on control, 20% thinning, and 40% thinning sites. Results indicated that visible flame height, vertical temperature distribution, and maximum heat release rate tended to decrease with higher thinning intensity, implying a lower forest fire risk. Overall, the WFDS simulations produced higher values compared to the laboratory experiments, but the trends were similar. The results of this study can serve as fundamental data for evaluating forest fire risk based on thinning intensity and establishing a research foundation for fire prevention.

Study on Synthesis and Characterization of Magnetic ZnFe2O4@SnO2@TiO2 Core-shell Nanoparticles (자성을 가진 ZnFe2O4@SnO2@TiO2 Core-Shell Nanoparticles의 합성과 특성에 관한 연구)

  • Yoo, Jeong-yeol;Park, Seon-A;Jung, Woon-Ho;Park, Seong-Min;Tae, Gun-Sik;Kim, Jong-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.710-715
    • /
    • 2018
  • In this study, $ZnFe_2O_4@SnO_2@TiO_2$ core-shell nanoparticles (NPs), a photocatalytic material with magnetic properties, were synthesized through a three-step process. Structural properties were investigated using X-ray diffraction (XRD) analysis. It was confirmed that $ZnFe_2O_4$ of the spinel, $SnO_2$ of the tetragonal and $TiO_2$ of the anatase structure were synthesized. The magnetic properties of synthesized materials were studied by a vibrating sample magnetometer (VSM). The saturation magnetization value of $ZnFe_2O_4$, a core material, was confirmed at 33.084 emu/g. As a result of the formation of $SnO_2$ and $TiO_2$ layers, the magnetism due to the increase in thickness was reduced by 33% and 40%, respectively, but sufficient magnetic properties were reserved. The photocatalytic efficiency of synthesized materials was measured using methylene blue (MB). The efficiency of the core material was about 4.2%, and as a result of the formation of $SnO_2$ and $TiO_2$ shell, it increased to 73% and 96%, respectively while maintaining a high photocatalytic efficiency. In addition, the antibacterial activity was validated via the inhibition zone by using E. Coli and S. Aureus. The formation of shells resulted in a wider inhibition zone, which is in good agreement with photocatalytic efficiency measurements.