• Title/Summary/Keyword: 열발전소

Search Result 3, Processing Time 0.017 seconds

Development of Numerical Model for Unsteady Flow Analysis jin Discharge Culvert of Thermal Power Plant: I. Model Setup (열발전소 배수암거 부정류해석 수치모형의 개발 : I. 모형의 정립)

  • Yun, Seong-Beom;Lee, Gi-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.761-768
    • /
    • 1997
  • A numerical model is developed to analyze the incompressible unsteady flow induced by the pump trip-out in the cooling water discharge culvert of thermal power plants. The numerical models has various features to deal concureently with the overall behavior of complicated unsteady flow due to the presence of cooling water internal system, seal well, air chamber, culvert, manholes, open channel and sea water. A leap-frog finite difference scheme is employed to solve governing equations, and the model is tested for a simple case of two tanks connected with a pipe. A fixed free surface boundary condition used earlier at the downstream end of culvert for large water body is investigated.

  • PDF

Development of Numerical Model for Unsteady Flow Analysis jin Discharge Culvert of Thermal Power Plant: II. Model Application (열발전소 배수암거 부정류해석 수치모형의 개발 : II. 모형의 적용)

  • Yun, Seong-Beom;Lee, Gi-Hyeok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.769-776
    • /
    • 1997
  • The behavior of surge induced in the discharge system of the thermal power plants by the sudden stop of cooling water pump is analyzed using the numerical model developed by Yoon and Lee (1997). Various effects, which are ignored earlier, such as discharge from internal system, air chamber and air inlet of seal well, monholes, open channel and sea are included. These effects of the surge behavior are systematically analyzed. Especially, the surge control effect and air pressure change in the air chamber associated with the area of air inlet are presented for easy application in practice.

  • PDF