• Title/Summary/Keyword: 열물질전달

Search Result 6, Processing Time 0.026 seconds

Heat and mass transfer of helical absorber on household absorption chiller/heater (가정용 흡수식 냉난방기의 나선형 흡수기 열물질전달)

  • 권오경;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.570-578
    • /
    • 1999
  • An experimental study has been performed on heat and mass transfer in a falling film absorber with a strong lithium bromide solution in small-sized household absorption chiller/heater. Components were concentrically arranged in a cylindrical form. from the center, low temperature generator, absorber and evaporator. This arrangement of helical-typed heat exchangers allows to make the machine much more compact than conventional one. Experimental measurements were conducted with a helical absorber and the obtained data were compared with data in the literatures. The comparison revealed that the helical absorber tube provides a similar performance to existing tube bundle absorber in heat and mass transfer. As a result, the heat and mass transfer characteristics of helical type absorber showed the possibility of the reduction in size and weight of small] capacity absorption chiller/heater.

  • PDF

Heat/Mass Transfer Measurements on a Film Cooled Blade with Naphthalene Saturated Coolant (나프탈렌 포화공기가 분사되는 막냉각 홀을 가진 터빈 블레이드 표면의 열/물질전달 계수 측정)

  • Lee, Dong-Hyun;Rhee, Dong-Ho;Kim, Kyung-Min;Cho, Hyung-Hee;Kim, Beom-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.433-436
    • /
    • 2010
  • In this paper, heat/mass transfer characteristics on a film cooled stationary rotor blade are investigated using the naphthalene sublimation method. A row-speed annular wind tunnel with a single annular turbine stage is used. Three rows of film cooling holes are machined on the leading edge of the test blade. Detailed heat/mass transfer distributions are measured with changing the blowing rate from 1.0 to 2.0. As the blowing ratio increases, overall heat/mass transfer increases and the lower peak formed on the pressure side were disappeared.

  • PDF

Analysis of Heat and Mass Transfer on Helical Absorber (헬리컬 흡수기의 흡수 열물질전달 해석)

  • Gwon, O-Gyeong;Im, Jong-Geuk;Yun, Jeong-In;Kim, Seon-Chang;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1428-1436
    • /
    • 2000
  • The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LIBr-H$_2$O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature. the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux.

Characteristic of Heat and Mass Transfer on Helical Absorber Using New Working Fluid (신작동매체를 이용한 헬리컬 흡수기의 열물질전달 특성)

  • Kwon, Oh-Kyung;Lim, Jong-Keuk;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.228-233
    • /
    • 2000
  • An experimental study has been performed regarding heat and mass transfer in a falling film absorber of domestic small-sized absorption chiller/heater. Components were concentrically arranged in cylindrical form : from the center, with a series of low temperature generator, absorber and evaporator. The arrangement of such helical-typed heat exchangers allows to make the system more compact as compared to conventional one. Experimental measurements were conducted with a helical absorber using $LiBr+LiI+LiNO_3+LiCl$ and LiBr solutions. As a result, the heat and mass flux performance of $LiBr+LiI+LiNO_3+LiCl$ solution shows the tendency of $2{\sim}5%$ increase. Therefore, $LiBr+LiI+LiNO_3+LiCl$ solution can be taken consideration into applying to small-sized absorption chiller/heater because of using without crystal through high concentration as 4wt% comparing with LiBr solution.

  • PDF

Prediction on heat and mass transfer coefficients in a packed layer of a regenerator with a solar desiccant cooling system (태양열제습냉방시스템 중 재생기의 충진층 내 열물질 전달계수에 관한 예측)

  • Eflita, Yohana;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.36-42
    • /
    • 2010
  • 본 논문은 태양열이용 냉난방시스템 중에서 실제로 액체흡수제를 재생하는 재생탑 내의 충진층에 있어서의 열 및 물질전달의 실험치와 이론적 해석에 의한 결과치와의 비교를 나타내고 있다.특히 물질전달의 극대화를 위하여 충진층 내에서 공기와 흡수제의 접촉면적을 크게 할 필요가 있는데,이를 위해서 본 실험에서는 직경이 3cm인 플라스틱제 충진재를 사용하였으며, 흡수제로는 저농도의 염화리튬 수용액이 사용 되었다. 충진층 내에서의 최적 높이를 예측하기 위하여 해석의 모델인 실험장치를 직접 제작하여 실험을 수행하였고, 이론 해석에 있어서 체적 열전달을 고려한 정상상태를 모델화하여 해석하였다. 이 결과, 충진층 내에서 실험치와 이론적인 계산치가 잘 일치함을 알 수 있었으며, 충진층의 높이가 2m 이상인 경우에는 높이에 따른 재생량의 차이가 없어서 없음을 알 수 있었다.

Modelling of the Heat and Mass Transfer in a Liquid Desiccant Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기의 열물질 전달 모델링)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.303-311
    • /
    • 2011
  • This study presents a new idea of liquid desiccant dehumidifier with extended surface to improve the compactness. Extended surface is inserted between vertical cooling tubes, and the liquid desiccant flows down along the tube walls and the extended surface as well. Though the extended surface contributes to the increase in the mass transfer area, the effect tends to be limited because less conductive non-metallic materials need to be applied due to the high corrosiveness of liquid desiccant. To analyze the effects of the extended surface insertion, mathematical modelling and numerical integration are performed for the heat and mass transfer in the liquid desiccant dehumidifier. The results show that, though the liquid desiccant on the extended surface is heated due to the moisture absorption, the temperature can be maintained by periodic mixing at the contact points between the tube and the extended surface with the liquid desiccant stream from the tube side at a relatively low temperature. This implies the absorption heat from the extended surface side can be removed effectively by mixing, which leads to a substantial improvement of the dehumidification in the liquid desiccant dehumidifier with extended surface. When the interval of the extended surface, $p_e/L$, is less than 0.1, the dehumidification is shown to increase by more than two times compared with that without extended surface.