• Title/Summary/Keyword: 열극계

Search Result 17, Processing Time 0.025 seconds

Hydrothermal Gold Mineralization of the Sambo Deposit in the Muan Area, Korea (무안 지역, 삼보 광상의 금광화작용)

  • Pak, Sang-Joon;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.275-286
    • /
    • 2008
  • The Sambo gold deposit located nearby the Cretaceous Hampyeong basin is composed of gold quartz fine vein(the Jija vein) within Cretaceous rhyolite showing $N10{\sim}20W$ trends as well as $N5{\sim}10E$ trending quartz veins(the Pungja, Gwangsan and Pungjaji veins) in Precambrian gneiss. The gold vein typically displays the intermittent and irregular fine veins within rhyolite. Electrum is disseminated in wallrock along the fine cracks as well as coexists with hematite replacing pyrite. Ore-forming fluids from the mineralized vein($H_2O/-NaCl$ system, Th; $340{\sim}200^{\circ}C$, Salinity <2.7 eq. wt.% NaCl) and NE-trending veins($H_2O-NaCl/-CO_2$ system, Th; $400{\sim}190^{\circ}C$, salinity <7.9 eq. wt.% NaCl) are featured by dissimilar physicochemical conditions but their fluid evolution trends(boiling and mixing) are similar with each other. Gold veins of the Sambo deposit filled along NNW-trending tension crack are related to pull-apart basin evolution. Selective gold mineralization of the deposit reflect to dissimilarity between two ore-forming fluid sources. Consequently, gold veining of the Sambo deposit formed at shallow-crustal level and could be categorized into epithermal-type gold deposit related to tensional fractures filling triggered by Cretaceous geodynamics.

Flow Dimensional Analysis for Constant Pressure Injection Test (정압주입시험을 이용한 지하수유동차원 해석)

  • 이은용
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 1993
  • Nowadays, the field hydraulic test is still an only method to evaluate groundwater characteristics in subsurface. The results of hydraulic test are very important for the concept model of fracture hydrogeology as well as the geometric pattern of fractures. The hydraulic tests performed in Korea are generally analysed under such assumption as steady radial flow in homogeneous aquifer or along simple geometry of fractures. Also the transmissivity measured in a fixed interval length is equivalent to a sum of individual fracture transmissivities in test legth. The boundary effects of weH hydraulics and the geometry of flow paths are hardly obtained from the test results analysed by a steady flow method. To circumvent this problem, the flow dimensional analysis was attempted from the results of constant pressure injection test carried out in a fractured granite area. A comparison of the hydraulic conductivity values from the transient and steady analysis shows that the latter is about a factor of 2~3 higher than the former. However, it was possible to analyse a flow dimension of each test interval from flow rate variation with time. The upper part of the bedrock(<10m deep) indicates an open boundary and the flow dimension shows nearly steady states, while the lower part of the bedrock(>25m deep) is characterized as sublinear flow dimension with a dosed boundary. In one of the test sections(15m deep), the flow dimension was changed from linear flow to spherical flow. From the experience of this study, one of the immediate problems to be solved is to enhance the field testing equipments, i.e., an accurate flowmeter with autorecording and a pressure detecting device to be able to install in the test section.

  • PDF

Formation of Clay Minerals by Water-Rock Interaction in the Fracture of Gneiss (편마암 열극에서의 물-암석 상호반응에 의한 점토광물 생성)

  • Jeong, Chan-Ho;Kim, Soo-Jin;Koh, Yong-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.49-61
    • /
    • 1994
  • As the groundwater flows along the fractures of crystalline rocks, it will be in contact with the fracture walls mostly coated by secondary minerals which are quite different form those of host rocks. The presence of fracture-filling minerals in crystalline rocks is important on the view point of radioactive waste disposal because of their great surface reactivity. The Surichi drill hole of 200 m in depth in the Yugu area composed mainly of Precambrian gneiss was selected to study the formation process of clay minerals on the fracture wall of gneiss, and their relation with present groundwater. The water-rock interaction in fractures resulted in the formation of gibbsite and clay minerals. They are formed by two different processes : (1) Incongruent dissolution of feldspar by groundwater diffused from a fracture path into rock matrix produced smectite and illite in situ, (2) on the wall of fracture, gibbsite, kaolinite, smectite and illite are formed by precipitation of dissolved species in groundwater. They show the paragenetic sequence such as gibbsite${\leftrightarrow}$kaolinite${\leftrightarrow}$smectite or illite. The paragenetic sequence of fracture-filling minerals was controlled by increase of pH of groundwater, decrease of fracture permeability by precipitation of fillings, and immobility of alkali or alkaline earths in groundwater. The groundwater from the Surichi borehole is a $Na-HCO_{3}$ type with pH range of 8.6-9.2. The sodium and bicarbonate in groundwater would be supplied by the dissolution of albite and calcite, respectively. The saturation index of groundwater and surface water calculated by WATEQ4F indicates that gibbsite and kaolinite are under precipitation to equilibrium state, and that smectite and illite are under equilibrium to redissolution environment. The stability relation of clay minerals in the $Na_{2}O-Al_{2}O_{3}-SiO_{2}-H_{2}O$ system shows that kaolinite is stable for all waters.

  • PDF

Petrological and Geological Safety Diagnosis of Multi-storied Stone Pagoda in the Daewonsa Temple, Sancheong, Korea (대원사 다층석탑의 지질학적 및 암석학적 안전진단)

  • 이찬희;서만철
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • The multi-storied Daewonsa stone pagoda (Treasure No. 1112) in the Sancheong, Korea was studied on the basis of deterioration and geological safety diagnosis. The stone pagoda is composed mainly of granitic gneiss, partly fine-grained granitic gneiss, leucocratic gneiss, biotite granite and ceramics. Each rock of the pagoda is highly exfoliated and fractured along the edges. Some fractures in the main body and roof stones are treated by cement mortar. This pagoda is strongly covered with yellowish to reddish brown tarnish due to the amorphous precipitates of iron hydroxides. Dark grey crust by manganese hydroxides occur Partly, and some Part coated with white grey gypsum and calcite aggregates from the reaction of cement mortar and rain. As the main body, roof and upper part of the pagoda, the rocks are developed into the radial and linear cracks. Surface of this pagoda shows partly yellowish brown, blue and green patchs because of contamination by algae, lichen, moss and bracken. Besides, wall-rocks of the Daewonsa temple and rock aggregates in the Daewonsa valley are changed reddish brown color with the same as those of the pagoda color. It suggests that the rocks around the Daewonsa temple are highly in iron and manganese concentrations compared with the normal granitic gneiss which color change is natural phenomena owing to the oxidation reaction by rain or surface water with rocks. Therefore, for the attenuation of secondary contamination, whitening and reddishness, the possible conservation treatments are needed. Consisting rocks of the pagoda would be epoxy to reinforce the fracture systems for the structural stability on the basements.

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

Fluid Inclusion and Stable Isotope Studies of the Kwangsin Pb-Zn Deposit (광신 연 - 아연 광상의 유체포유물 및 안정동위원소 연구)

  • Choi, Kwang-Jun;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.505-517
    • /
    • 1997
  • Lead and zinc mineralization of the Kwangsin mine was formed in quartz and carbonate veins that filled fault-related fractures in the limestone-rich Samtaesan Formation of the Chosun Supergroup and the phyllite-rich Suchangni Formation of unknown age. A K-Ar date of alteration sericite indicates that the Pb-Zn mineralization took place during Late Cretaceous (83.5 Ma), genetically in relation to the cooling of the nearby Muamsa Granite (83~87 Ma). Mineral paragenesis can be divided into three stages (I, II, III): (I) the deposition of barren massive white quartz, (II) the main Pb-Zn mineralization with deposition of white crystalline quartz and/or carbonates (rhodochrosite and dolomite), and (III) the deposition of post-ore barren calcite. Mineralogic and fluid inclusion data indicate that lead-zinc minerals in middle stage II (IIb) were deposited at temperatures between $182^{\circ}$ and $276^{\circ}C$ from fluids with salinities of 2.7 to 5.4 wt. % equiv. NaCl and with log $fs_2$ values of -15.5 to -11.8 atm. The relationship between homogenization temperature and salinity data indicates that lead-zinc deposition was a result of fluid boiling and later meteoric water mixing. Ore mineralization occurred at depths of about 600 to 700 m. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S_{CDT}=9.0{\sim}14.5$ ‰) indicate a relatively high ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids (up to 14 ‰), likely indicating an igneous source of sulfur largely mixed with an isotopically heavier sulfur source (possibly sulfates in surrounding sedimentary rocks). There is a remarkable decrease of calculated ${\delta}^{18}O$ value of water in hydrothermal fluids with increasing paragenetic time: stage I, 14.6~10.1 ‰; stage IIa, 5.8~2.2 ‰; stage IIb, 0.8~2.0 ‰; stage IIc, -6.1~-6.8 ‰, This indicates a progressive increase of meteoric water influx in the hydrothermal system at Kwangsin. Measured and calculated hydrogen and oxygen isotope values indicate that the Kwangsin hydrothermal fluids was formed from a circulating (due to intrusion of the Muamsa Granite) meteoric waters which evolved through interaction mainly with the Samtaesan Formation (${\delta}^{18}O=20.1$ to 24.9 ‰) under low water/rock ratios.

  • PDF

Physical Properties of Sedimentary Rocks containing Dinosaur Trace Fossils in the Haenam: A Relationship with Chert Content (해남 공룡화석 지 퇴적암의 물리적 성질: 쳐트 함량과의 관계)

  • 조현구;김수진;장세정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • The physical properties of Uhangri sedimentary rocks were investigated to provide the conservation strategy of Dinosaur trace fossil in the Haenam. The porosity, void ratio, dry density, water content, and degree of saturation were calculated according to the proper laboratory experiments for 9 sedimentary specimens. The flexural strength (or modulus of rupture) and thermal expansion coefficient were measured using the universal testing machine and dilatometer, respectively. The Uhangri sedimentary rocks have very low porosity, void ratio, and water content. The flexural strength of shales are 24.16~42.84, and those of sandstones are 16.34~ $43.52N/mm^2$, which are much weaker than common sedimentary rocks. The very low flexural strength of sedimentary rocks despite very low porosity, is ascribed to fine fissures in the rocks. The thermal expansion coefficient of rocks were $14.7~21.3\Times10^{-6 }$, which are 2~2.5 times as high as alumina and about 10 times as high as talc. As the content of chert in the sandstone increases, the porosity, void ratio, and water content increase, while the dry density and degree of saturation decrease. The chert-bearing sandstone have higher porosity and thermal expansion coefficient, and lower flexural strength compared to those free of chert.

Hydrothermal Gold mineralization of the trabong district, vietnam : Mineralogical and geochemical study (베트남 짜봉(Trabong) 지역의 열수 금 광화작용 : 광물 및 지화학적 연구)

  • 한진경
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.129-139
    • /
    • 1999
  • Hydrothermal gold deposits of the Trabong district in Vietnam occur as single-stage quartz $\pm$ calcite veins (0.3-1.2 m thick) which fill fault fractures in graphite-bearing gneiss and schist of the Chulai Complex and Kham Duc Formation of the Proterozoic age. Ore grades are 1.3 to 92.4 g/ton Au. Ore mineralogy is very simple, consisting mainly of pyrite with minor amounts of base-metal sulfides and electrum. Gold grains occur in two assemblages as follows: (1) early, Fe-rich (7.2-10.4 mole % FeS) sphalerite + electrum (50.4-64.3 atom % Au) assemblage occurring as inclusions in pyrite; (2) late, Fe-poor «4.7 mole % FeS) sphalerite + galena + electrum (47.6-81.7 atom % Au) assemblage occurring along fractures of pyrites. Based on fluid inclusion data and thermochemical considerations of ore mineral assemblages, ore minerals were formed at high temperatures (about $230^{\circ}C$ to $420^{\circ}C$) from $H_{2}O-CO_{2}(-CH_{4})$-NaCI fluids with the sulfur fugacity of about $10^{-6}$ to $10^{-10}$ atm. Fluid inclusion data also indicate that ore mineralization occurred mainly as a result of fluid unmixing accompanying $CO_2$ effervescence. Calculated oxygen and measured hydrogen isotope compositions of mineralizing waters (${\delta}^{18}O_{V-SMOW}$ values = 5.3 to 8.6$\textperthousand$, ${\delta}D_{V-SMOW}$ values = - 60 to - 52$\textperthousand$), along with the sulfur isotope compositions of vein sulfides (${\delta}^{34}S_{CDR}$ values = - 1.2 to 2.8$\textperthousand$) and carbon isotope compositions of inclusion $CO_2$ (${\delta}^{13}C_{PDB}$ values = - 4.7 to - 2.0$\textperthousand$) indicate that the high temperature (mesohypothermal) gold mineralization formed from a magmatic fluid.

  • PDF

Geochemical Modeling of Groundwater in Granitic Terrain: the Yeongcheon Area (영천 화강암지역 지하수의 지화학적 모델링)

  • Koh, Yong-Kwon;Kim, Chun-Soo;Bae, Dae-Seok;Yun, Seong-Taek
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.192-202
    • /
    • 1998
  • We investigated the geochemistry and environmental isotopes of granite-bedrock groundwater in the Yeongcheon diversion tunnel which is located about 300 m below the land surface. The hydrochemistry of groundwaters belongs to the Ca-HCO$_3$type, and is controlled by flow systems and water-rock interaction in the flow conduits (fractures). The deuterium and oxygen-18 data are clustered along the meteoric water line, indicating that the groundwater are commonly of meteoric water origin and are not affected by secondary isotope effects such as evaporation and isotope exchange. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing down rapidly into the tunnel along fractured zones. Based on the mass balance and reaction simulation approaches, using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, we have modeled the low-temperature hydrogeochemical evolution of groundwater in the area. The results of geochemical simulation show that the concentrations of Ca$\^$2+/, Na$\^$+/ and HCO$_3$and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg$\^$2+/ and K$\^$+/ frist increase with the dissolution, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, namely the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: first hematite, then gibbsite, then kaolinite, then montmorillonite, then illtic material, and finally microcline. During the simulation all the gibbsite is consumed, kaolinite precipitates and then the continuous reaction converts the kaolinite to montmorillonite and illitic material. The reaction simulation results agree well with the observed, water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters.

  • PDF

Gold Mineralization of the Youngbogari Mine, Youngdong Area (영동지역 영보가리 광산의 금광화 작용)

  • Heo, Chul-Ho;Chi, Se-Jung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.115-124
    • /
    • 2007
  • Electrum-sulfide mineralization of the Youngbogari mine area occurred in two stages of massive quartz veins that fill the fractures along the fault/shear zones in the Precambrian gneiss. Ore mineralogy is simple, consisting of arsenopyrite $(31.4{\sim}33.4atom.%As)$, pyrite, sphalerite $(4.1{\sim}17.6mole%FeS)$, galena, chalcopyrite, argentite, and electrum. Electrum $(60.3{\sim}87.6atom.%Ag)$ is associated with galena, chalcopyrite and late sphalerite infilling the fractures in quartz and sulfides. Fluid inclusion data show that ore mineralization was formed from $H_2O-CO_2-CH_4-NaCl$ fluids $(X_{CO2+CH4}=0.0\;to\;0.2)$ with low salinities (0 to 10wt.% eq. NaCl) at temperatures between $200^{\circ}\;and\;370^{\circ}C$. Gold-silver mineralization occurred later than the base-metal sulfide deposition, at temperatures near $250^{\circ}C$ and was probably a result of cooling and decreasing sulfur fugacity caused by sulfide precipitation and/or $H_2S$ loss through fluid unmixing.