• Title/Summary/Keyword: 열교환 시스템

Search Result 215, Processing Time 0.024 seconds

Design and Implementation of Solar Heat Capacity Calculation System for Industrial Processes based on Web (웹 기반의 산업공정용 태양열 집열량 성능계산 시스템의 설계 및 구현)

  • Song, Jeo;Cho, Jung-Hyun;Kwon, Jin-Gwan;Yoo, Jae-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.445-446
    • /
    • 2017
  • 신재생 에너지 분야의 산업과 기술의 발달과 함께 스마트 그리드와 에너지 저장 시스템이 주목받고 있다. 기존의 에너지 공급망에 정보통신기술(ICT)을 접목하여 에너지 공급자와 소비자가 양방향으로 실시간 정보를 교환함으로써 에너지 효율을 최적화하는 차세대 지능형 에너지망에 대한 수요가 늘고 관리기술에 대한 요구가 증가함에 따라, 다양한 에너지 공급원마다의 최적화된 운영시스템을 요구하고 있다. 본 논문에서는 산업분야에서 사용되고 있는 태양열에 기반한 시스템과 누적된 기상 데이터와 집열량에 대한 데이터를융합분석하여 수평면전일사량을 예측할 수 있는 시스템을 제안한다.

  • PDF

Performance and Operational Characteristics of Natural Gas Fuel Processor for 1kW Class PEMFCs (1kW급 고분자 연료전지용 통합형 천연가스 개질 수소 제조 시스템의 성능 및 운전 특성)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-20
    • /
    • 2006
  • 한국에너지기술연구원에서는 가정용 고분자연료전지 열병합 발전시스템을 위한 통합형 천연가스 연료처리 시스템을 개발해 왔다. 가정용 시스템으로서 필수적인 소형화와 고효율을 현실화하기 위해, 연료처리 시스템의 각 단위 공정 즉 수증기 개질, 수성가스 전이, 선택적 산화 공정 등을 이중 동 심관형 반응기에 통합하여 상호 열교환이 용이하도록 반응기를 설계하였다. 현재 시험 운전 중인 Prototype-I 연료 처리 시스템은 1kW급 고분자 연료전지 열병합 발전 시스템에 개질 가스를 공급하기 위해 설계되었으며, 기초 성능은 정격 부하 운전시 열효율 78% (HHV 기준), 메탄 전환율 91%이다. 개질 가스 내 일산화탄소 농도는 고분자 연료전지 전극의 피독을 피하기 위해 10ppm 이하로 유지되어야 하며, Prototype-I 연료 처리 시스템은 백금과 루테늄 촉매를 적용한 선택적 산화 반응기를 통해 개질 가스 내 일산화탄소 농도를 10ppm 이하로 제거하였다. 일반 가정에서는 고분자 연료전지 시스템의 부하 변동이 예상되기 때문에 연료 처리 시스템의 부하 변동 운전 특성도 살펴보았다 정격 부하에서 80%, 60%, 40%로 부하를 변동하며 운전하였고, 각 부하에서 안정한 메탄 전환율과 10ppm이하의 일산화탄소 농도를 보였다. 80%까지는 열효율이 77%로 큰 변화를 보이지 않았으며, 60%에서는 76%, 40%에서는 72%로 열효율이 감소하는 현상을 보였다 연료 처리 시스템의 일일 시동-정지 운전시 내구성을 테스트 중이다. 현재까지 50여회의 일일-시동 정지를 시도하였다 시동 후 약 세 시간가량의 정력 부하 운전을 실시한 후 부하 변동을 실시하였고, 총 운전 시간 8시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다

  • PDF

The Program Coding Technology for the heat Load Prediction in Switching Room (통신시스템실 열부하 예측프로그래밍 기술)

  • Noh, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.14 no.5 s.59
    • /
    • pp.111-114
    • /
    • 1999
  • 전화국사 내 교환기의 신설이나 증설 시에 최적의 열부하 산정이 필요하다. 이를 위해 전화국사의 특성에 알맞은 열부하 계산 프로그램을 윈도우용으로 개발하여 비전문가들도 쉽게 사용할 수 있도록 하고자 한다. 프로그램 구성은 기본자료입력부, 전화국사의 자료입력부, 입력된 데이터를 이용하여 국사의 냉방부하와 냉방시스템의 용량을 계산하는 부분 그리고 출력부분으로 크게 4부분으로 나눌 수 있다. 본 프로그램을 이용하여 한국통신 중앙전화국 5ESS실의 냉방기기용량을 산정해 본 결과, 기존 냉방기기 69USRT의 49%에 해당되는 33.5USRT로 나타나 기존 냉방기기의 용량이 너무 과다하게 선정되었음이 판명되었다. 본 프로그램은 전화국사의 에너지 절약에 기여할 수 있을 것으로 판단된다.

Conceptual Design of the Minimum Integration IGCC (최소 공정연계를 가지는 석탄가스화 복합발전 시스템의 개념 설계)

  • Park, Moung-Ho;Kim, Jong-jin;Kim, Yong-Hee;Kim, Chul
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • 공정연계를 최소호하는 IGCC 시스템에 대한 개념설계를 수행하였다. 공정분석은 상용코드인 ASPEN PLUS를 이용하였다. 가스화기의 적절한 운전조건을 찾기위하여 가스화기를 경계조건으로 하는 액서지 민감도분석을 통하여 투입되는 슬러리와 산소의 조건을 결정하였다. 또한 , 생성가스 냉각시 현열을 최대한 회수학 ldn하여 , 열교환망을 통하여 급수를 에열하고 가스화플랜트의 각 부분에 공급하도록 공정을 구성하였다. 여분의 가열된 급수는 갑압증발시켜 복합사이클에서 동력을 생성시키는데 사용되어진다. 이와 같은 시스템은 , 가스터빈 -ASU-가스화플랜트의 공기에 의한 공정연계와, HRSG-가스냉각 및 정제시스템 간의 증기연계를 가능한 적게함으로써 공정의 운전성과 경제성을 최적으로 유지할 수 있다. 본 연구에서 제시하는 공정의 경우에, 열효율이 약 39%(고위발열량 기준)으로 나타났으며, 단위 기기 및 단위공정들의 최적화를 통하여 40%의 효율달성이 가능할 것이다.

  • PDF

Design of the Stand-alone Autothermal Reformer for Natural Gas (자체 기동형 천연가스 자열개질기 설계)

  • Koo, Jeongboon;Kim, Youngae;Kwon, Hyunji;Kwak, Inseob;Sin, Jangsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • 본 연구에서는 중 소형 SOFC에 적용할 수 있는 연료 변환 시스템으로 자체 기동 및 독립운전이 가능한 천연가스 자열개질(ATR) 반응기를 $10Nm^3/hr$급으로 개발하고자한다. 설계된 천연가스 자열개질기는 자열개질 촉매를 코팅한 금속 모노리스형 촉매체를 반응기 내에 장착함으로써 반응열을 신속하게 제거 또는 공급할 수 있는 시스템으로 구성되었다. 이는 금속 모노리스의 뛰어난 열전도 능력에 의해 반응기 내의 촉매층 전체 온도 분포를 균일하게 유지할 수 있는 저에너지형 자열개질 반응기이다. 또한 빠른 기동 특성을 실현하기 위하여 전기 발열식 촉매체(EHC ; Electically Heated Catalyst)를 장착한 start-up 시스템을 적용하여 천연가스 자열개질 반응기의 신속한 기동과 장치 간편화를 실현하였으며, 합성 syngas의 배열 회수를 위한 최적 열교환 시스템을 설계/적용함으로써 에너지 효율 향상을 도모하였다. 이와 같은 촉매 및 구조 시스템을 가지는 천연가스 자열개질 반응용 소형 연료변환 시스템을 원통형의 이중관 구조로 구성하고, 독립운전 모드로 개발함으로써 소형 SOFC의 연료 변환장치의 적용에 용이하게 하고자 한다.

  • PDF

Boil-Off Gas Reliquefaction System for LNG Carriers with BOG-BOG Heat Exchange (BOG 내부 열교환을 이용한 LNG 선박용 Boil-Off Gas 재액화 시스템)

  • Lee, Yoon-Pyo;Shin, You-Hwan;Lee, Sang-Hoon;Kim, Kwang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.444-451
    • /
    • 2009
  • The price increase of natural resources and the worldwide growth of LNG demand led to save the waste of Boil-Off Gas evaporating from cargo tanks of LNG carriers during navigation. As one of the efforts, a BOG reliquefaction system with BOG-to-BOG heat exchanging method was newly devised. This study was also discussed on the process details such as some features and advantages including comparisons with conventional BOG reliquefaction system, non BOG-BOG heat exchange type. The thermodynamic analysis for the system were also performed. Through the cycle simulation, the process efficiency of the BOG reliquefaction system BOG-BOG heat exchange was estimated to be increased up to 21%.

Study on Thermal Performance of Energy Textile in Tunnel (터널 지열 활용을 위한 에너지 텍스타일의 열교환 성능 연구)

  • Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1907-1914
    • /
    • 2013
  • Textile-type heat exchangers installed on the tunnel walls for facilitating ground source heat pump systems, so called "energy textile", was installed in an abandoned railroad tunnel around Seocheon, South Korea. To evaluate thermal performance of the energy textile, a series of long-term monitoring was performed by artificially applying daily intermittent cooling and heating loads on the energy textile. In the course of the experimental measurement, the inlet and outlet fluid temperatures of the energy textile, pumping rate, temperature distribution in the ground, and air temperature inside the tunnel were continuously measured. From the long-term monitoring, the heat exchange rate was recorded as in the range of 57.6~143.5 W per one unit of the energy textile during heating operation and 362.3~558.4 W per one unit during cooling operation. In addition, the heat exchange rate of energy textile was highly sensitive to a change in air temperature inside the tunnel. The field measurements were verified by a 3D computational fluid dynamics analysis (FLUENT) with the consideration of air temperature variation inside the tunnel. The verified numerical model was used to evaluate parametrically the effect of drainage layer in the energy textile.

비활성 가스제너레이터 성능분석

  • 김수용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.14-14
    • /
    • 1999
  • 비활성 가스제너레이터는 가스터빈 추진기관 및 기타 열기관을 이용하여 연소가 되지 않는 저온의 공기를 생산하는 기계장치를 말하며 이러한 저온의 비활성 기체를 화재 지역에 분사하는 경우 기존의 소방수를 이용한 화재 진압방식보다 매우 효율적으로 화재진압에 사용되어 질 수 있다. 일반적으로 민항기 등의 가스터빈 추진 기관에서 배기되는 기체내에는 터빈입구온도(TIT : Turbine Inlet Temperature)및 초과공기지수(Excess Air Coefficient)에 따라 다르게 나타나지만 TIT가 1500$^{\circ}$K인 경우 약 13-14%정도의 산소가 잔존하는 것으로 알려져 있다. 따라서 본 연구에서는 가스터빈 및 열교환 시스템 그리고 터빈 1단 등의 시스템 조합율을 통하여 대기 중의 기체의 온도를 영하 2$0^{\circ}C$ 및 산소함유량을 약 5%수준까지 낮춤으로서 이를 대형 화재 진압에 사용하기 위한 연구이다. 비활성 가스제너레이터에 사용하는 연료로는 Kerosene 및 CNG(Compressed Natural Gas)등이 사용될 수 있으며, 유량이 8.1kg/sec인 터보축 가스터빈 엔진을 사용하는 경우 18750㎥ 부피의 비활성기체를 생산하는데 Kerosene 연료가 약 1톤(200$ 이하)이 필요한 것으로 계산되며 이에 소요되는 시간도 약 52분에 지나지 않는 것으로 계산되었다. 만일 50kg/sec의 보다 큰 가스터빈 엔진을 사용하는 경우 약 9분 정도가 필요한 것으로 계산되었다. 사용되는 가스터빈은 압축비가 15, 열교환기의 효율이 $\varepsilon$=0. 그리고 최종 터빈 1단의 팽창비가 1.25가 적합한 것으로 계산된다. 연구 분석 결과 기술적 문제점으로는 배기 가스온도가 낮은데 따른 출구 부분의 Bearing, Sealing이 문제가 될 수 있다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.

  • PDF

Development of Integrated NG Fuel Processor for Residential PEMFC system (가정용 고분자연료전지 시스템을 위한 통합형 천연가스 개질기 개발)

  • Seo Yutaek;Seo Dong Joo;Jeong Jin Hyeok;Yoon Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.231-234
    • /
    • 2005
  • 수소 기반의 에너지 사회는 중소규모 분산 발전과 연료 전지 자동차에서 시작될 거라는 예측이 지배적이다. 가정용 고분자 연료전지 시스템은 상업화에 가장 가까운 소규모 분산 발전 시스템중의 하나이며, 에너지기술연구위원에서는 가정용 고분자 연료전지에 수소를 공급하기 위한 천연가스 수증기 개질시스템의 개발을 진행해 왔다. 효율 향상과 제작의 용이성, 그리고 소형화에 초점을 맞추어 개발된 prototype-I은 $2.0Nm^3/hr$의 순수 수소 생산 용량을 가지고 있으며, 수증기 개질기와 수성가스 전이 반응기 수중기 생성 장치, 그리고 반응열 공급에 필요한 버너 등을 이중 동심원관에 통합한 형태이다. 수중기 개질과 수성가스 전이 반응을 거쳐 나오는 개질 가스의 조성은 $72.3\%\;H_2,\;4.8\%\;CH_4,\;0.7\%\;CO,\;22.2\%\;CO_2$이며, 이때 S/C 비율은 2.5였다. 고분자 연료 전지 공급 시 요구되는 CO 농도가 10ppm 이하이기 때문에, 본 시스템에는 선택적 산화 반응기를 2단으로 설치하여 CO. 농도를 10ppm 이하로 낮추어주었다. 전체 시스템의 열효율은 LHV 기준으로 $68\%$. Prototype-I의 운전을 통해 설계 개선안을 도출하였으며, 이를 적용해 제작한 prototype-II가 시험 운전 중이다,. 통합된 개질 시스템에서는 각 단위 반응기사이의 열교환을 최적화하여 단위 반응들이 적정 온도 범위에서 일어나도록 유도하는 것이 중요하다. Prototype-II는 수증기 개질 반응기와 WGS 반응기, 수증기 생성 장치 사이의 열교환율을 향상시켜 농도를 $2.5\%$로 감소시키면서 CO의 농도는 $1\%$이하로 유지하였다. 이 결과를 바탕으로 얻어진 메탄 전환율은 $87\%$이고, 열효율은 LHV 기준으로 $75\%$이다. 아울러 개선점을 적용한 선택적 산화 반응기를 제작하였다. 개질 가스와 산소의 혼합을 유도하고, 반응기 온도의 제어를 통해 선택적 산화 반응의 속도와 선택성을 향상시키고자 한다. 시스템의 운전을 통해 메탄 전환율과 열효율의 개선을 진행할 예정이다.

  • PDF

고 분산성 자성 나노유체의 열전도도 및 점성

  • Seo, Yong-Jae;Lee, Hyo-Suk;Jo, Guk;Gil, Dae-Seop;Jeong, Gyeong-U;Ju, Myeong-Eun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.4.2-4.2
    • /
    • 2010
  • 최근 열전달율을 획기적으로 향상시킬 수 있는 고 열전도성 나노유체가 주목을 받고 있다. 고 열전도성 나노유체는 액상보다 열전도도가 수백~수만 배 높은 고상의 금속 또는 비금속 나노입자를 물이나 오일 등에 미량 균일하게 분산시킴으로써 기존의 유체가 가지지 못한 높은 열전도율과 분산안정성을 갖는 기능성유체를 말한다. 고 열전도성 나노유체는 기존 냉각시스템에서 냉각유체만 교체할 경우에도 열전달 효율을 20% 이상 향상시킬 수 있는 저비용 고효율작동 유체이다. 이 나노유체는 발전설비, 공조설비, 에너지 산업, 석유화학, 화학공업, 제철산업, 가정용 냉난방설비, 자동차 등 산업 전 분야의 열교환시스템에 활용이 가능하다. 따라서 고 열전도성 나노유체는 종래 열효율의 한계를 돌파할 수 있는 에너지 이용 효율 향상 기술의 패러다임을 바꿀 혁신적인 신소재로 여겨지고 있다. 그러나 현재까지 개발된 나노유체는 초기 열전도 특성은 우수하나 장기간 분산안정성이 확보되지 않아 시간이 경과함에 따라 열전도도가 점점 감소하는 경향을 보인다. 또한 탄소나노튜브를 분산한 나노유체의 경우와 같이 유체의 점도가 크게 증가하여 실제 산업에 적용 시 커다란 동력손실을 초래할 수 있으며 열교환시스템에 파울링이 발생할 소지가 크다. 이러한 문제점을 해결하기 위해서는 나노유체에서 열전달이 일어나는 메커니즘이 규명되어야 하지만 아직 명확한 이론이나 가설이 정립되어 있지 않다. 이 논문에서는 나노유체가 높은 열전도율을 보이는 현상을 설명할 수 있는 몇 가지 이론을 살펴 보고 지금까지 개발된 안정성이 아주 높은 나노유체의 열전도 특성을 비교 분석하여 획기적인 열전도성 나노유체 개발 가능성을 살펴보고자 한다. 이를 위해 나노입자의 조성, 유체 내 농도 및 자기장 등이 나노유체의 열전도율에 미치는 영향을 연구하였다.

  • PDF