• Title/Summary/Keyword: 열교환기 효율

Search Result 270, Processing Time 0.033 seconds

Mechanism Improvement of the Heat Exchanger for the Thermal Efficiency Increase of Hot Air Heater (온풍난방기의 열효율 증대를 위한 열교환기 구조개선)

  • Kang, Geum-Choon;Kang, Yoen-Ku;Ryou, Young-Sun;Kim, Young-Joong;Lee, Si-Young;Paek, Yee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.363-370
    • /
    • 2009
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. Hot air heaters of 256,246 units have been supplied as main greenhouse heating equipment until 2008 and greenhouse heating cost has reached to 620 billions won in Korea. In order to improve the thermal efficiency of the hot air heater and to reduce the expenses for greenhouse heating, prototype hot air heater was manufactured and tested in this experiment. The heat exchanger of tested prototype hot air heater was circular and hexagonal pipe type and inline and stagger arrangement type. Capacity of the heating was 43,062 kJ/h and total heat transfer area of the heat exchanger was $10.728\;m^2$. According to the performance test, it could supply heat of 38,240 to 35,100 kJ/h depending on the fan motor speed of 1,740~1,220 rpm, respectively. Thermal efficiency of hot air heater was 87.0% to 80.8% in the same conditions. As a result, thermal efficiency of hot air heater with hexagonal pipe-stagger arrangement heat exchanger developed in this study was higher 10.2% than that of conventional hot air heater and heating energy saving rate of 14.3% increased.

Characteristics Diagnosis of Supersonic Air Plasma by 0.4 MW Class Segmented Type Arc Torch (0.4 MW급 분절형 아크 토치에 의한 초음속 공기 플라즈마의 특성 진단)

  • Kim, Min-Ho;Lee, Mi-Yeon;Choe, Chae-Hong;Kim, Jeong-Su;Seo, Jun-Ho;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.194-195
    • /
    • 2013
  • 초음속 공기 플라즈마 환경을 모사할 수 있는 0.4 MW급 Enhanced Huels형 초음속 공기 플라즈마 발생 장비가 2012년에 전북대학교에 설치 완료되었다. 초음속 공기 플라즈마 시험장비는 대기권으로 reentry 할 수 있는 비행체의 열차폐체 시험평가를 주목적으로 개발되었으며, 핵융합장치용 고온 내열체 소재개발에도 활용될 예정이다. 분절형 아크 플라즈마 토치는 전극부식에 의한 오염도를 적으면서 고출력의 안정적인 플라즈마를 발생시키며, 일반적인 직류 토치로는 얻을 수 없는 초고엔탈피 플라즈마 열유동을 얻을 수 있는 특징이 있다. 구축된 장비는 최대 직류 출력 1,200 kW의 DC 전원공급장치, 0.4 MW급의 분절형 아크 플라즈마 토치, ${\phi}1.5m{\times}2m$ 크기의 진공쳄버, 1 MW의 냉각 능력을 갖춘 디퓨저와 열교환기, 진공 용량 $100m^3$/min의 진공펌프 9대, 88 g/s의 공기유량에서 NOx를 50,000 ppm에서 100 ppm으로 저감할 수 있는 후처리 시스템, 4 bar 15 g/s의 공기를 공급할 수 있는 가스 공급장치, 30 bar 600 lpm의 저전도수와 4 bar 560 lpm의 일반수를 공급할 수 있는 냉각수 공급장치로 구성되어 있다. 초음속 공기 플라즈마의 발생 특성을 시험하기 위해 플라즈마 발생 조건으로 토치공급전력 350 kW와 410 kW, 토치 공기 공급 유량 16.3 g/s, 토치 내부압력 3.9~4.2 bar, 챔버압력 40 mbar으로 시험을 수행하였다. 발생된 플라즈마 상태를 진단하기 위해 속도는 쇄기 탐침기, 열유속은 Gardon 게이지, 엔탈피와 토치 효율은 토치의 공급전력과 냉각수에 의한 손실 전력으로 각각 측정하였다.

  • PDF

Studies on the Cycle Simulation for a Geothermal Heat Pump System using CO2 as Refrigerant (CO2 지열 히트펌프 사이클 모사에 관한 연구)

  • Kim, Young-Jae;Chang, Keun-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2888-2897
    • /
    • 2011
  • The performance of a geothermal heat pump system using carbon dioxide was investigated by the steady-state cycle simulation program developed in this study. A parametric study was carried out in order to investigate the effect of various operating conditions on the performance of the basic cycle without an IHX(internal heat exchanger). The simulation program consists of several Fortran subroutines for simulating indoor and outdoor heat exchangers, compressors, and expansion valves and Visual Basic subroutines for the graphic user interface(GUI) consisted with pre-processor for input data and post-processor for the output data. Refprop V6.01 was used for estimating the thermodynamic properties and equilibrium behaviors of carbon dioxide. The simulation results were validated by comparing experimental data through a series of case studies. The cycle simulation program developed in this work would seem to be a useful tool in optimizing and establishing economical and efficient operating conditions in the $CO_2$ geothermal heat pump system.

A Study on Effective Energy Use of the Open Type Ground Heat Exchanger Using Underground Temperature Gradient (지중온도 경사를 이용한 효율적 지중에너지 이용 방안에 관한 연구)

  • Ryu, Hyungkyou;Chung, Minho;Lee, Byungseok;Rhew, Hyojun;Choi, Hyunjun;Choi, Hangseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.401-408
    • /
    • 2014
  • This paper proposes an optimum operation method for open type ground heat exchangers. A series of TRTs and artificial heating/cooling operations were carried out while monitoring temperature in the hole of SCW. The ground temperature naturally increases with depth, but a switch between the cooling/heating mode results in a change in the distribution of ground temperature. The effect of the mode change was evaluated by performing LMTD and COMSOL multiphysics analysis for a reduced model with the depth of 150 m. As a result, in the cooling mode, the upstream operation is more efficient than the downstream operation and reduces EWT by $2.26^{\circ}C$. On the other hand, in the heating mode, the downstream operation is advantageous over the upstream operation and increases EWT by $3.19^{\circ}C$. The merit of the optimum operation will be enhanced for the typical dimension of SCW with a depth of 400~500 m. In the future, an open type ground heat exchanger system adopting the optimum operation with variation in the ground temperature will be used in practice.

Evaluation on in-situ Heat Exchange Efficiency of Energy Slab According to Pipe Materials and Configurations (파이프 재질 및 형태에 따른 에너지 슬래브의 현장 열교환 성능 평가)

  • Lee, Seokjae;Oh, Kwanggeun;Han, Shin-in;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • The energy slab is a ground coupled heat exchanger equipped in building slab structures, which represents a layout similar to the horizontal ground heat exchanger (GHEX). The energy slab is installed as one component of the floor slab layers in order to utilize the underground structure as a hybrid energy structure. However, as the energy slab is horizontally arranged, its thermal performance is inevitably less than the conventional vertical GHEXs. Therefore, stainless steel (STS) pipes are alternatively considered as a heat exchanger instead of high density polyethylene (HDPE) pipes in order to enhance thermal performance of GHEXs. Moreover, not only a floor slab but also a wall slab can be utilized as a heat-exchangeable energy slab in order to maximize the use of underground space effectively. In this paper, four field-scale energy slabs were constructed in a test bed, which consist of the STS and HDPE pipe, and a series of thermal response tests (TRTs) was conducted to evaluate relative heat exchange efficiency per unit pipe length according to the pipe material and the configuration of energy slabs. The energy slab equipped with the STS pipe shows higher thermal performance than the energy slab with the HDPE pipe. In addition, thermal performance of the wall-type energy slab is almost equivalent to the floor-type energy slab.

A Comparative Study of the Cold Power Generation Systems for LNG Terminal (LNG 인수기지용 냉열발전 시스템 비교 연구)

  • 김동수;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 1996
  • The heat of evaporation (cold energy) of LNG is the energy consumed in the production of LNG. This energy amounts to 14% of the NG. In Pyungtak LNG terminal, it is about 96 MW in 1993. In order to utilize the cold energy, the cold power generation systems are investigated: The Rankine cycle using the low temperature energy, the partial expansion cycle using the pressure energy, and the Linde process which is a combined cycle of the Rankine and the partial direct expansion cycle. The commercial simulator, ASPEN Plus, is used. The conceptual design data are obtained from the current facilities of the Pyungtak LNG terminal. The performances of three systems are evaluated. The amount of electric power ranges iron 3 MW to 6MW. The optimum energy efficiency is about 37%. The optimum design conditions are obtained for the partial direct expansion (PDE) cycle. The performance of the PDE cycle is supposed to be comparable to that of the Rankine cycle if the areas of the total heat exchanger of the both cycle are equal.

  • PDF

Study on the performance of a heat pump system with serial dehumidification function (직렬 제습방식 열펌프 시스템의 성능특성에 관한 연구)

  • Ko, Wonbin;Ko, Ji-Woon;Park, Youn Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.609-614
    • /
    • 2014
  • In this research, results of measuring temperature and relative humidity of underground-air-heat in Jeju showed $15{\sim}18^{\circ}C$ and 70~80% each which are somewhat high compare to other regions. So the Multi-effect dehumidifying and heating Heat Pump system which has merged functions of dehumidification and heating is made to solve this problem mentioned previously. When the suction air was $15^{\circ}C$ with 60% humidity, the outcome was 1.70 on $COP_h$ and 1.797(kg/h) on total amount of dehumidification, and also showed 1.87 $COP_h$ with 1.87 total amount of dehumidification under the condition of $20^{\circ}C$ and 80% humidity of suction air. Furthermore, $COP_h$ showed increased number which is 1.87 and also total amount of dehumidification increased which was 3.269(kg/h). The highest COP can be achieved at $17^{\circ}C$ and 70% relative humidity condition.

Simulation of a Supercritical Carbon Dioxide Power Cycle with Preheating (예열기를 갖는 초임계 이산화탄소 동력 사이클의 시뮬레이션)

  • Na, Sun-Ik;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.787-793
    • /
    • 2015
  • In response to the growing interest in supercritical carbon dioxide ($S-CO_2$) power cycle technology because of its potential enhancement in compactness and efficiency, the $S-CO_2$ cycles have been studied intensively in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. Despite this interest, there are relatively few studies on waste heat recovery applications. In this study, the $S-CO_2$ cycle that has a split flow with preheating was modeled and simulated. The variation in the power was investigated with respect to the changes in the value of a design parameter. Under the simulation conditions considered in this study, it was confirmed that the design parameter has an optimal value that can maximize the power in the $S-CO_2$ power cycle that has a split flow with preheating.

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler (접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구)

  • Kang, Kieseop;Ryu, Changkook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.

Experimental Study of a Recuperator with Offset Strip Fins (오프셋 스트립 휜을 가지는 리큐퍼레이터에 대한 실험적 연구)

  • Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il;Kim, Myungbae
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • In the present study, a recuperator to improve the thermal efficiency of a micro gas turbine is considered. The counter flow plate-fin heat exchanger with offset strip fins is chosen as the type of the recuperator. From the optimization study as varying design parameters of the recuperator determined from the ideal cycle analysis, the internal structure of the recuperator is determined. The recuperator is made from stainless steel 304. In order to evaluate performance of the recuperator, experimental investigation is performed. The effects of inlet temperature of hot-side of the recuperator on the thermal performance of the recuperator are investigated. As a result, effectiveness of the recuperator obtained from the experiments is well consistent with that obtained from the correlations.