• Title/Summary/Keyword: 열경제학 해석

Search Result 6, Processing Time 0.021 seconds

Exergetic and Thermoeconomic Analysis of a 200kW Phosphoric Acid Fuel Cell Plant (200kW 인산형 연료전지 발전시스템의 엑서지-열경제학적 해석)

  • Jeon, J.;Kwak, H.;Lee, H.;Choi, D.;Park, D.;Cho, Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.689-696
    • /
    • 2001
  • Exergetic and thermoeconomic analysis were performed for a 200kW Phosphoric Acid Fuel Cell(PAFC) plant which offers many advantage for cogeneration in the aspect of high electrical efficiency and low emission. This analytical study was based on the data obtained by in-field measurement of PC25 fuel cell plant to find whether this system is viable economically. For 100% load condition, the electrical efficiency and the unit cost of electricity are about 45% and 0.032 $/kWh respectively, which turn out to be much better than those for the 1000kW gas turbine cogeneration plant. Further, at lower loads, the unit costs of electricity and hot water increase slightly and consequently more economic operation is possible at any loads.

  • PDF

Exergetic and Thermoeconomic Analysis of Steam Power Plant (스팀 동력 플랜트의 엑서지 및 열경제학적 해석)

  • Kim, Duck-Jin;Jung, Jung-Yeul;Kwak, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.76-83
    • /
    • 2003
  • Exergetic and thermoeconomic analyses were performed fer a 137-MW steam power plant. In these analyses, mass and energy conservation laws were applied to each component of the system. Quantitative balance of the exergy and exergetic cost for each component, and for the whole system was carefully considered. The exergo-economic model, which represented the productive structure of the system was used to visualize the cost formation process and the productive interaction between components. The computer program developed in this study can determine production costs of power plants, such as gas-and steam-turbines plants and gas-turbine cogeneration plants. The program can also be used to study plant characteristics, namely, thermodynamic performance and sensitivity to changes in process and/or component design variables.

Thermoeconomics to divided the energetic cost into each working fluid (CGAM problem analysis) (엑서지 단가를 각 작동유체별로 나눈 열경제학 (CGAM 문제해석))

  • Kim, Deok-Bong;Kim, Deok-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.222-227
    • /
    • 2000
  • At representative thermoeconomic theory to determine the unit cost of multiple products, there are the $\ulcorner$SPECO$\lrcorner$ method of Tsatsaronis's study group and the $\ulcorner$MOPSA$\lrcorner$ method of chung-ang university phase laboratory. Against this theory, we propose new theory called $\ulcorner$Thermoeconomics to divide the exergetic cost into each working fluid$\lrcorner$ in this study. Also, we apply new thermoeconomic theory to CGAM problem (30MW-grade imaginary gas turbine cogeneration power plant) that it is representative power system in thermoeconomics theory, and we fixed to interpreted the unit cost of electricity on the part of gas turbine and the unit cost of steam exergy(enthalpy) on the part of HRSG.

  • PDF

Thermoeconomic Analysis of Power Plants with Integrated Exergy Stream (통합적 엑서지에 의한 발전 플랜트의 열경제학적 해석)

  • Kim, D.;Lee, H.;Kwak, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.871-878
    • /
    • 2000
  • Exergetic and thermoeconomic analysis were performed for a 500-MW combined cycle plant and a 137-MW steam power plant without decomposition of exergy stream of matter into thermal and mechanical exergies. The calculated costs of electricity are almost same within 0.5% as those obtained by the thermoeconomic method with decomposition of exergy into thermal and mechanical exergies of the combined cycle plant. However for the gas-turbine cogeneration plant having different kinds of products. the difference in the unit costs of products, obtained from the two methodologies is about 2%. Such outcome indicates that the level at which the cost balances are formulated does not affect the result of thermoeconomic analysis, that is somewhat contradictory to that concluded previously.

  • PDF

Thermoeconomics Analysis to apply net concept of material flow to Power System (발전시스템에 물질흐름의 net 개념을 적용한 열경제학 해석)

  • Kim, Deok-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.962-969
    • /
    • 2000
  • Quality that character of energy is the same at every state in case of equal working fluid and net concept of material flow was applied to thermoeconomics about energy system, and we could naturally explain the suitable degree about this concept, also thermoecomic equations about general power plant was easily deduced. And deduced equations exactly corresponded with principle of thermoeconomics that overall input cost flow rate equal overall output cost flow rate. This equations is applied to gas turbine cogeneration power plant as one example and found the product unit cost. Also this product cost comparison could been naturally explained.

  • PDF

A Suggestion of Penalty Cost Appropriation Methodology for Performance Acceptance Test of CGAM Cogeneration - Part I (CGAM 열병합발전의 인수성능에 대한 페널티 비용 책정 방법론 제안 - Part I)

  • Kim, Deok-Jin
    • Plant Journal
    • /
    • v.12 no.2
    • /
    • pp.36-40
    • /
    • 2016
  • At the contract for power plant construction, the penalty appropriation on performance decrease is signed between ordering organization and construction firm. In this, the penalty cost signed must be reasonable value that both of ordering organization and construction firm can accept, therefore the methodology for penalty appropriation is very important. Cogeneration is a system that produces electricity and heat at the same time, therefore the penalty appropriation for cogeneration should be uncertain. Thermoeconomics analyzes various energy costs, however the relation of thermoeconomics and penalty cost may not be analyzed up to now. The aim of this study demonstrates that thermoeconomics can be applied to the penalty appropriation at the performance acceptance test. As the result of CGAM system, if the construction cost is $10,000,000, the value of $6,665,688 was appropriated to the electricity production performance and the value of $3,334,312 was appropriated to the heat production performance. Therefore if one percentage at the electricity production performance decreases, the penalty is $6,666, and one percentage at the heat production performance decrease, we can understand that the penalty is $3,334.

  • PDF