• Title/Summary/Keyword: 열간프레스성형

Search Result 13, Processing Time 0.026 seconds

Trimless Blank Design for Hot Stamping Process of a Sill Side (실 사이드의 열간 프레스 성형을 위한 트림리스 블랭크 설계)

  • Lee, In-Kyu;Lee, Sung-Yun;Lee, Sang-Kon;Ahn, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.93-99
    • /
    • 2016
  • The trimming process is required for satisfying the dimensions of a final product in the hot stamping process. In general, the mechanical trimming or laser trimming process is applied after hot stamping. However, these processes have several disadvantages such as short tool life and low productivity. Therefore, in this study, the optimal trimless blank shape for the hot stamping process of a sill side was designed to remove the trimming process after hot stamping. In order to design the trimless blank, numerical analysis was performed. Firstly, CFD analysis was carried out to predict the cooling temperature and holding time of the hot stamping process. Then, the optimal trimless blank shape was determined through FE analysis. The effectiveness of the designed trimless blank shape was verified through a hot stamping experiment at an actual industrial site.

Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis (유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화)

  • Son, Hyun-Sung;Choi, Byung-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.

다공성 박판의 온간 성형공정에 관한 연구

  • 문양호;이동우;양동열;원재선;김대현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.38-43
    • /
    • 1993
  • 최근 텔레비젼 화면의 선명도에 대한 일반적인 요구가 높아져서 통신 방식에 있어서도 고품위 텔레비젼(HDD TV)방식의 개발이 진행되고 있다. 선명도의 요망이 높아짐에 따라 CRT(텔레비젼 수상관)의 해상도를 향상시킬 것이 요구되고 있다. 본 연구의 목적은 고온의 프레스 성형공정을 도입하여 정확한 형태로 인바 재료 섀도우마스크를 성형하여 고화질의 CRT를 얻을수 있도록 성형 공정을 확립하고 이를 위한 금형 시스템을 개발하는 데 있다. 본 연구에서는 인바 섀도우 마스크의 열간 재료시험을 통해 온도에 따른 물성 공정을 장대칭단면에 대해 강점소성 유한 요소법을 이용하여 해석하였다

국소 가열방법을 이용한 2단게 축대칭 디프 드로잉 공정의 해석 및 설계

  • 이동우;송인섭;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.104-108
    • /
    • 1992
  • 국소가열 가공방법은 종래 사용 되어온 온간,열간 가공의 경우와는 달리 프레스 성형의 응력조건 또는 양긱,열(온도)에 의한 재료 성질의변화 등을 고려하여, 가공하는 박판의 필요 부분을 선택적으로가열, 냉각 또는 두가지를 조합하여 처리하는 것이다. 온도 구배의 영향이 박판 성형의 공정에 많은 영향을 줌에도 불구하고 종래의 박판 성형가공은 주로 열을 고려하지않은 성형해석이 대부분이었고 열을 고려 하였다라도 대 부분이 실험에의존 한 방법이었다. 그러나 실제의 공정 설계에서 실험만을 통한 공정 변수의규명은 많은 노 력과 시간을 필요로 하기 때문에 컴퓨터를 통한 시뮬레이션의 필요성이 대두 되었다. 본 연구는 박판 축대칭 온도 구배와, 변형해석을 유한 요소적 방법을 통해 행하고 이를 실제 공정 설계에 적용할 수있도록 도움을 주고자 하는 데에 있다.

An Experimental Study of Characteristics of Plate Deformation by Heating Process (열간가공에 의한 판의 변형특성에 관한 실험적 연구)

  • Chang-Doo Jang;Dae-Eun Ko;Byeong-Il Kim;Jeong-Ung Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.62-70
    • /
    • 2001
  • As the ship hull is a compound-curved structure, plate bending process is indispensible. The process includes press bending process for forming major 1st curvature and heating process for forming the rest curvature. Especially the heating process that is above 50 percents of entire bending work is carried out exclusively by skillful workers. Many researches have been made to automate the heating process but most of these are about line heating process and researches for triangle heating process are rare. This study is a fundamental study to develop a efficient analysis method for triangle heating and focused on clarifying the deformation characteristics of plate by triangle heating. In this paper, we carried out heating experiments and analysed the deformation characteristics of plate to explain the deformation characteristics of plates rationally by showing the phase transformed high temperature region. Also we investigated the heating effect on the hull material properties by mechanical tests.

  • PDF

저합금강판의 열간프레스성형에 따른 상변태 전산 해석

  • Bok, Hyeon-Ho;Kim, Hun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • Recently, hot stamping process has been paid attention greatly by automobile makers in accordance with the fuel efficiency and environmental issues as well as crash safety issue. The hot-stamped parts, however, demand extreme mechanical properties such as tensile strength of over 1470 MPa or equivalently Vickers hardness of around 450. In this work, to meet the demand efficiently, a method to predict mechanical property of hot-stamped parts based on numerical phase transformation scheme has been proposed associated with the thermo-mechanical coupled finite element analysis. This work deals with various phase transformation equations and validates them to select appropriate model for 0.2C-0.1Si-1.4Mn-0.5Cr-0.01Mo-0.002B steel sheet. The authors show that an efficient method saving time and cost to develop hot-stamped automobile parts ensuring suitable mechanical properties such as Vickers hardness and strength.

  • PDF

Measurement of Mechanical Properties for Hot Press Forming (열간프레스성형에서의 기계적 물성 측정)

  • Ahn, Kang-Hwan;Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Hong-Gee;Park, Sung-Ho;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.450-453
    • /
    • 2009
  • In order to overcome drawbacks of the advanced high strength steel such as inferior formability and large springback, the hot press forming process(HPF) has been being applied for forming of automotive sheet parts. Good formability and dimensional accuracy without springback as well as good crash performance of final products are the advantages of the HPF process. In this work, a method to characterize the mechanical properties of the HPF steel was developed based on the simple tension test at high temperatures and its finite element analysis, while it was applied to obtain strain rate and temperature dependent flow curves of the HPF steel. The final flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF

Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis (열-소성 연계 해석을 이용한 자동차 로어암 부품 개발)

  • Son, H.S.;Kim, H.G.;Choi, B.K.;Cho, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF

Develop of Strain Measurement and Characterization of Mechanical Behavior for Hot Press Forming (열간프레스성형에서의 변형 측정장치 개발 및 기계적 거동의 물성화)

  • Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Don-Gun;Ahn, Kang-Hwan;Son, Hyun-Sung;Kim, Gyo-Sung;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.198-201
    • /
    • 2009
  • As a way to improve the safety of automotives and to reduce the weight of vehicles, new forming technologies and advanced materials are in high demand in the automotive industry. However, the advanced strength steel has inferior formability and large springback. In order to overcome such drawbacks, the hot press forming process (HPF) has been being applied for forming of automotive sheet parts. In this work, new equipment was suggested to measure unlimited displacement range compared to previous one which was able to measure only up to 10mm displacement range. The external extensometer connected with grips by wire was applied to equipment so that total strain range was measured up to failure also in high temperature. And the finite element analysis was conducted to characterize the mechanical properties of the HPF steel. Finally, the flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF